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FIGURE 7.7. On the Wage data set, a natural cubic spline with 15 degrees
of freedom is compared to a degree-15 polynomial. Polynomials can show wild
behavior, especially near the tails.

7.5 Smoothing Splines

In the last section we discussed regression splines, which we create by spec-
ifying a set of knots, producing a sequence of basis functions, and then
using least squares to estimate the spline coefficients. We now introduce a
somewhat different approach that also produces a spline.

7.5.1 An Overview of Smoothing Splines

In fitting a smooth curve to a set of data, what we really want to do is
find some function, say g(x), that fits the observed data well: that is, we
want RSS =

∑n
i=1(yi − g(xi))2 to be small. However, there is a problem

with this approach. If we don’t put any constraints on g(xi), then we can
always make RSS zero simply by choosing g such that it interpolates all
of the yi. Such a function would woefully overfit the data—it would be far
too flexible. What we really want is a function g that makes RSS small,
but that is also smooth.
How might we ensure that g is smooth? There are a number of ways to

do this. A natural approach is to find the function g that minimizes
n∑

i=1

(yi − g(xi))
2 + λ

∫
g′′(t)2dt (7.11)

where λ is a nonnegative tuning parameter. The function g that minimizes
(7.11) is known as a smoothing spline.

smoothing
splineWhat does (7.11) mean? Equation 7.11 takes the “Loss+Penalty” for-

mulation that we encounter in the context of ridge regression and the lasso
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in Chapter 6. The term
∑n

i=1(yi − g(xi))2 is a loss function that encour-
loss function

ages g to fit the data well, and the term λ
∫
g′′(t)2dt is a penalty term

that penalizes the variability in g. The notation g′′(t) indicates the second
derivative of the function g. The first derivative g′(t) measures the slope
of a function at t, and the second derivative corresponds to the amount by
which the slope is changing. Hence, broadly speaking, the second derivative
of a function is a measure of its roughness : it is large in absolute value if
g(t) is very wiggly near t, and it is close to zero otherwise. (The second
derivative of a straight line is zero; note that a line is perfectly smooth.)
The

∫
notation is an integral , which we can think of as a summation over

the range of t. In other words,
∫
g′′(t)2dt is simply a measure of the total

change in the function g′(t), over its entire range. If g is very smooth, then
g′(t) will be close to constant and

∫
g′′(t)2dt will take on a small value.

Conversely, if g is jumpy and variable then g′(t) will vary significantly and∫
g′′(t)2dt will take on a large value. Therefore, in (7.11), λ

∫
g′′(t)2dt en-

courages g to be smooth. The larger the value of λ, the smoother g will be.
When λ = 0, then the penalty term in (7.11) has no effect, and so the

function g will be very jumpy and will exactly interpolate the training
observations. When λ → ∞, g will be perfectly smooth—it will just be
a straight line that passes as closely as possible to the training points.
In fact, in this case, g will be the linear least squares line, since the loss
function in (7.11) amounts to minimizing the residual sum of squares. For
an intermediate value of λ, g will approximate the training observations
but will be somewhat smooth. We see that λ controls the bias-variance
trade-off of the smoothing spline.
The function g(x) that minimizes (7.11) can be shown to have some spe-

cial properties: it is a piecewise cubic polynomial with knots at the unique
values of x1, . . . , xn, and continuous first and second derivatives at each
knot. Furthermore, it is linear in the region outside of the extreme knots.
In other words, the function g(x) that minimizes (7.11) is a natural cubic
spline with knots at x1, . . . , xn! However, it is not the same natural cubic
spline that one would get if one applied the basis function approach de-
scribed in Section 7.4.3 with knots at x1, . . . , xn—rather, it is a shrunken
version of such a natural cubic spline, where the value of the tuning pa-
rameter λ in (7.11) controls the level of shrinkage.

7.5.2 Choosing the Smoothing Parameter λ

We have seen that a smoothing spline is simply a natural cubic spline
with knots at every unique value of xi. It might seem that a smoothing
spline will have far too many degrees of freedom, since a knot at each data
point allows a great deal of flexibility. But the tuning parameter λ controls
the roughness of the smoothing spline, and hence the effective degrees of
freedom. It is possible to show that as λ increases from 0 to∞, the effective

effective
degrees of
freedom

degrees of freedom, which we write dfλ, decrease from n to 2.
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In the context of smoothing splines, why do we discuss effective degrees
of freedom instead of degrees of freedom? Usually degrees of freedom refer
to the number of free parameters, such as the number of coefficients fit in a
polynomial or cubic spline. Although a smoothing spline has n parameters
and hence n nominal degrees of freedom, these n parameters are heavily
constrained or shrunk down. Hence dfλ is a measure of the flexibility of the
smoothing spline—the higher it is, the more flexible (and the lower-bias but
higher-variance) the smoothing spline. The definition of effective degrees of
freedom is somewhat technical. We can write

ĝλ = Sλy, (7.12)

where ĝλ is the solution to (7.11) for a particular choice of λ—that is, it
is an n-vector containing the fitted values of the smoothing spline at the
training points x1, . . . , xn. Equation 7.12 indicates that the vector of fitted
values when applying a smoothing spline to the data can be written as a
n × n matrix Sλ (for which there is a formula) times the response vector
y. Then the effective degrees of freedom is defined to be

dfλ =
n∑

i=1

{Sλ}ii, (7.13)

the sum of the diagonal elements of the matrix Sλ.
In fitting a smoothing spline, we do not need to select the number or

location of the knots—there will be a knot at each training observation,
x1, . . . , xn. Instead, we have another problem: we need to choose the value
of λ. It should come as no surprise that one possible solution to this problem
is cross-validation. In other words, we can find the value of λ that makes
the cross-validated RSS as small as possible. It turns out that the leave-
one-out cross-validation error (LOOCV) can be computed very efficiently
for smoothing splines, with essentially the same cost as computing a single
fit, using the following formula:

RSScv(λ) =
n∑

i=1

(yi − ĝ(−i)
λ (xi))

2 =
n∑

i=1

[
yi − ĝλ(xi)

1− {Sλ}ii

]2
.

The notation ĝ(−i)
λ (xi) indicates the fitted value for this smoothing spline

evaluated at xi, where the fit uses all of the training observations except
for the ith observation (xi, yi). In contrast, ĝλ(xi) indicates the smoothing
spline function fit to all of the training observations and evaluated at xi.
This remarkable formula says that we can compute each of these leave-
one-out fits using only ĝλ, the original fit to all of the data!5 We have

5The exact formulas for computing ĝ(xi) and Sλ are very technical; however, efficient
algorithms are available for computing these quantities.
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FIGURE 7.8. Smoothing spline fits to the Wage data. The red curve results
from specifying 16 effective degrees of freedom. For the blue curve, λ was found
automatically by leave-one-out cross-validation, which resulted in 6.8 effective
degrees of freedom.

a very similar formula (5.2) on page 202 in Chapter 5 for least squares
linear regression. Using (5.2), we can very quickly perform LOOCV for
the regression splines discussed earlier in this chapter, as well as for least
squares regression using arbitrary basis functions.
Figure 7.8 shows the results from fitting a smoothing spline to the Wage

data. The red curve indicates the fit obtained from pre-specifying that we
would like a smoothing spline with 16 effective degrees of freedom. The blue
curve is the smoothing spline obtained when λ is chosen using LOOCV; in
this case, the value of λ chosen results in 6.8 effective degrees of freedom
(computed using (7.13)). For this data, there is little discernible difference
between the two smoothing splines, beyond the fact that the one with 16
degrees of freedom seems slightly wigglier. Since there is little difference
between the two fits, the smoothing spline fit with 6.8 degrees of freedom
is preferable, since in general simpler models are better unless the data
provides evidence in support of a more complex model.

7.6 Local Regression

Local regression is a different approach for fitting flexible non-linear func-
local
regressiontions, which involves computing the fit at a target point x0 using only the

nearby training observations. Figure 7.9 illustrates the idea on some simu-
lated data, with one target point near 0.4, and another near the boundary

Henry Scharf



306 7. Moving Beyond Linearity

Algorithm 7.1 Local Regression At X = x0

1. Gather the fraction s = k/n of training points whose xi are closest
to x0.

2. Assign a weight Ki0 = K(xi, x0) to each point in this neighborhood,
so that the point furthest from x0 has weight zero, and the closest
has the highest weight. All but these k nearest neighbors get weight
zero.

3. Fit a weighted least squares regression of the yi on the xi using the
aforementioned weights, by finding β̂0 and β̂1 that minimize

n∑

i=1

Ki0(yi − β0 − β1xi)
2. (7.14)

4. The fitted value at x0 is given by f̂(x0) = β̂0 + β̂1x0.

specify it directly. Figure 7.10 displays local linear regression fits on the
Wage data, using two values of s: 0.7 and 0.2. As expected, the fit obtained
using s = 0.7 is smoother than that obtained using s = 0.2.
The idea of local regression can be generalized in many different ways.

In a setting with multiple features X1, X2, . . . , Xp, one very useful general-
ization involves fitting a multiple linear regression model that is global in
some variables, but local in another, such as time. Such varying coefficient
models are a useful way of adapting a model to the most recently gathered

varying
coefficient
model

data. Local regression also generalizes very naturally when we want to fit
models that are local in a pair of variables X1 and X2, rather than one.
We can simply use two-dimensional neighborhoods, and fit bivariate linear
regression models using the observations that are near each target point
in two-dimensional space. Theoretically the same approach can be imple-
mented in higher dimensions, using linear regressions fit to p-dimensional
neighborhoods. However, local regression can perform poorly if p is much
larger than about 3 or 4 because there will generally be very few training
observations close to x0. Nearest-neighbors regression, discussed in Chap-
ter 3, suffers from a similar problem in high dimensions.

7.7 Generalized Additive Models

In Sections 7.1–7.6, we present a number of approaches for flexibly predict-
ing a response Y on the basis of a single predictor X. These approaches can
be seen as extensions of simple linear regression. Here we explore the prob-

Henry Scharf
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FIGURE 7.10. Local linear fits to the Wage data. The span specifies the fraction
of the data used to compute the fit at each target point.

lem of flexibly predicting Y on the basis of several predictors, X1, . . . , Xp.
This amounts to an extension of multiple linear regression.
Generalized additive models (GAMs) provide a general framework for

generalized
additive
model

extending a standard linear model by allowing non-linear functions of each
of the variables, while maintaining additivity. Just like linear models, GAMs

additivitycan be applied with both quantitative and qualitative responses. We first
examine GAMs for a quantitative response in Section 7.7.1, and then for a
qualitative response in Section 7.7.2.

7.7.1 GAMs for Regression Problems

A natural way to extend the multiple linear regression model

yi = β0 + β1xi1 + β2xi2 + · · ·+ βpxip + εi

in order to allow for non-linear relationships between each feature and the
response is to replace each linear component βjxij with a (smooth) non-
linear function fj(xij). We would then write the model as

yi = β0 +
p∑

j=1

fj(xij) + εi

= β0 + f1(xi1) + f2(xi2) + · · ·+ fp(xip) + εi. (7.15)

This is an example of a GAM. It is called an additive model because we
calculate a separate fj for each Xj , and then add together all of their
contributions.
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FIGURE 7.11. For the Wage data, plots of the relationship between each feature
and the response, wage, in the fitted model (7.16). Each plot displays the fitted
function and pointwise standard errors. The first two functions are natural splines
in year and age, with four and five degrees of freedom, respectively. The third
function is a step function, fit to the qualitative variable education.

In Sections 7.1–7.6, we discuss many methods for fitting functions to a
single variable. The beauty of GAMs is that we can use these methods
as building blocks for fitting an additive model. In fact, for most of the
methods that we have seen so far in this chapter, this can be done fairly
trivially. Take, for example, natural splines, and consider the task of fitting
the model

wage = β0 + f1(year) + f2(age) + f3(education) + ε (7.16)

on the Wage data. Here year and age are quantitative variables, and education

is a qualitative variable with five levels: <HS, HS, <Coll, Coll, >Coll, refer-
ring to the amount of high school or college education that an individual
has completed. We fit the first two functions using natural splines. We fit
the third function using a separate constant for each level, via the usual
dummy variable approach of Section 3.3.1.
Figure 7.11 shows the results of fitting the model (7.16) using least

squares. This is easy to do, since as discussed in Section 7.4, natural splines
can be constructed using an appropriately chosen set of basis functions.
Hence the entire model is just a big regression onto spline basis variables
and dummy variables, all packed into one big regression matrix.
Figure 7.11 can be easily interpreted. The left-hand panel indicates that

holding age and education fixed, wage tends to increase slightly with year;
this may be due to inflation. The center panel indicates that holding education

and year fixed, wage tends to be highest for intermediate values of age, and
lowest for the very young and very old. The right-hand panel indicates
that holding year and age fixed, wage tends to increase with education: the
more educated a person is, the higher their salary, on average. All of these
findings are intuitive.
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FIGURE 7.12. Details are as in Figure 7.11, but now f1 and f2 are smoothing
splines with four and five degrees of freedom, respectively.

Figure 7.12 shows a similar triple of plots, but this time f1 and f2 are
smoothing splines with four and five degrees of freedom, respectively. Fit-
ting a GAM with a smoothing spline is not quite as simple as fitting a GAM
with a natural spline, since in the case of smoothing splines, least squares
cannot be used. However, standard software such as the gam() function in R

can be used to fit GAMs using smoothing splines, via an approach known
as backfitting. This method fits a model involving multiple predictors by

backfitting
repeatedly updating the fit for each predictor in turn, holding the others
fixed. The beauty of this approach is that each time we update a function,
we simply apply the fitting method for that variable to a partial residual.6

The fitted functions in Figures 7.11 and 7.12 look rather similar. In most
situations, the differences in the GAMs obtained using smoothing splines
versus natural splines are small.
We do not have to use splines as the building blocks for GAMs: we can

just as well use local regression, polynomial regression, or any combination
of the approaches seen earlier in this chapter in order to create a GAM.
GAMs are investigated in further detail in the lab at the end of this chapter.

Pros and Cons of GAMs

Before we move on, let us summarize the advantages and limitations of a
GAM.

! GAMs allow us to fit a non-linear fj to each Xj , so that we can
automatically model non-linear relationships that standard linear re-
gression will miss. This means that we do not need to manually try
out many different transformations on each variable individually.

6A partial residual for X3, for example, has the form ri = yi − f1(xi1) − f2(xi2).
If we know f1 and f2, then we can fit f3 by treating this residual as a response in a
non-linear regression on X3.
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! The non-linear fits can potentially make more accurate predictions
for the response Y .

! Because the model is additive, we can examine the effect of each Xj

on Y individually while holding all of the other variables fixed.

! The smoothness of the function fj for the variable Xj can be sum-
marized via degrees of freedom.

" The main limitation of GAMs is that the model is restricted to be
additive. With many variables, important interactions can be missed.
However, as with linear regression, we can manually add interaction
terms to the GAM model by including additional predictors of the
form Xj × Xk. In addition we can add low-dimensional interaction
functions of the form fjk(Xj , Xk) into the model; such terms can
be fit using two-dimensional smoothers such as local regression, or
two-dimensional splines (not covered here).

For fully general models, we have to look for even more flexible approaches
such as random forests and boosting, described in Chapter 8. GAMs provide
a useful compromise between linear and fully nonparametric models.

7.7.2 GAMs for Classification Problems

GAMs can also be used in situations where Y is qualitative. For simplicity,
here we will assume Y takes on values zero or one, and let p(X) = Pr(Y =
1|X) be the conditional probability (given the predictors) that the response
equals one. Recall the logistic regression model (4.6):

log

(
p(X)

1− p(X)

)
= β0 + β1X1 + β2X2 + · · ·+ βpXp. (7.17)

The left-hand side is the log of the odds of P (Y = 1|X) versus P (Y = 0|X),
which (7.17) represents as a linear function of the predictors. A natural way
to extend (7.17) to allow for non-linear relationships is to use the model

log

(
p(X)

1− p(X)

)
= β0 + f1(X1) + f2(X2) + · · ·+ fp(Xp). (7.18)

Equation 7.18 is a logistic regression GAM. It has all the same pros and
cons as discussed in the previous section for quantitative responses.
We fit a GAM to the Wage data in order to predict the probability that

an individual’s income exceeds $250,000 per year. The GAM that we fit
takes the form

log

(
p(X)

1− p(X)

)
= β0 + β1 × year+ f2(age) + f3(education), (7.19)

where
p(X) = Pr(wage > 250|year, age, education).
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FIGURE 7.13. For the Wage data, the logistic regression GAM given in (7.19)
is fit to the binary response I(wage>250). Each plot displays the fitted function
and pointwise standard errors. The first function is linear in year, the second
function a smoothing spline with five degrees of freedom in age, and the third a
step function for education. There are very wide standard errors for the first
level <HS of education.

Once again f2 is fit using a smoothing spline with five degrees of freedom,
and f3 is fit as a step function, by creating dummy variables for each of the
levels of education. The resulting fit is shown in Figure 7.13. The last panel
looks suspicious, with very wide confidence intervals for level <HS. In fact,
no response values equal one for that category: no individuals with less than
a high school education make more than $250,000 per year. Hence we refit
the GAM, excluding the individuals with less than a high school education.
The resulting model is shown in Figure 7.14. As in Figures 7.11 and 7.12,
all three panels have similar vertical scales. This allows us to visually assess
the relative contributions of each of the variables. We observe that age and
education have a much larger effect than year on the probability of being
a high earner.

7.8 Lab: Non-linear Modeling

In this lab, we re-analyze the Wage data considered in the examples through-
out this chapter, in order to illustrate the fact that many of the complex
non-linear fitting procedures discussed can be easily implemented in R. We
begin by loading the ISLR2 library, which contains the data.

> library(ISLR2)

> attach(Wage)

Henry Scharf
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