

7 Moving Beyond Linearity

So far in this book, we have mostly focused on linear models. Linear models are relatively simple to describe and implement, and have advantages over other approaches in terms of interpretation and inference. However, standard linear regression can have significant limitations in terms of predictive power. This is because the linearity assumption is almost always an approximation, and sometimes a poor one. In Chapter 6 we see that we can improve upon least squares using ridge regression, the lasso, principal components regression, and other techniques. In that setting, the improvement is obtained by reducing the complexity of the linear model, and hence the variance of the estimates. But we are still using a linear model, which can only be improved so far! In this chapter we relax the linearity assumption while still attempting to maintain as much interpretability as possible. We do this by examining very simple extensions of linear models like polynomial regression and step functions, as well as more sophisticated approaches such as splines, local regression, and generalized additive models.

- Polynomial regression extends the linear model by adding extra predictors, obtained by raising each of the original predictors to a power. For example, a *cubic* regression uses three variables, X, X^2 , and X^3 , as predictors. This approach provides a simple way to provide a nonlinear fit to data.
- Step functions cut the range of a variable into K distinct regions in order to produce a qualitative variable. This has the effect of fitting a piecewise constant function.

290 7. Moving Beyond Linearity

- Regression splines are more flexible than polynomials and step functions, and in fact are an extension of the two. They involve dividing the range of X into K distinct regions. Within each region, a polynomial function is fit to the data. However, these polynomials are constrained so that they join smoothly at the region boundaries, or *knots*. Provided that the interval is divided into enough regions, this can produce an extremely flexible fit.
- Smoothing splines are similar to regression splines, but arise in a slightly different situation. Smoothing splines result from minimizing a residual sum of squares criterion subject to a smoothness penalty.
- *Local regression* is similar to splines, but differs in an important way. The regions are allowed to overlap, and indeed they do so in a very smooth way.
- *Generalized additive models* allow us to extend the methods above to deal with multiple predictors.

In Sections 7.1–7.6, we present a number of approaches for modeling the relationship between a response Y and a single predictor X in a flexible way. In Section 7.7, we show that these approaches can be seamlessly integrated in order to model a response Y as a function of several predictors X_1, \ldots, X_p .

7.1 Polynomial Regression

Historically, the standard way to extend linear regression to settings in which the relationship between the predictors and the response is nonlinear has been to replace the standard linear model

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i$$

with a polynomial function

$$y_{i} = \beta_{0} + \beta_{1}x_{i} + \beta_{2}x_{i}^{2} + \beta_{3}x_{i}^{3} + \dots + \beta_{d}x_{i}^{d} + \epsilon_{i},$$
(7.1)

polynomial

regression

where ϵ_i is the error term. This approach is known as *polynomial regression*, and in fact we saw an example of this method in Section 3.3.2. For large enough degree d, a polynomial regression allows us to produce an extremely non-linear curve. Notice that the coefficients in (7.1) can be easily estimated using least squares linear regression because this is just a standard linear model with predictors $x_i, x_i^2, x_i^3, \ldots, x_i^d$. Generally speaking, it is unusual to use d greater than 3 or 4 because for large values of d, the polynomial curve can become overly flexible and can take on some very strange shapes. This is especially true near the boundary of the X variable.

Degree-4 Polynomial

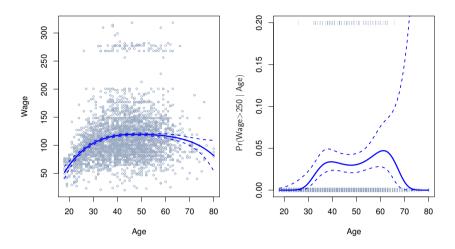


FIGURE 7.1. The Wage data. Left: The solid blue curve is a degree-4 polynomial of wage (in thousands of dollars) as a function of age, fit by least squares. The dashed curves indicate an estimated 95% confidence interval. Right: We model the binary event wage>250 using logistic regression, again with a degree-4 polynomial. The fitted posterior probability of wage exceeding \$250,000 is shown in blue, along with an estimated 95% confidence interval.

The left-hand panel in Figure 7.1 is a plot of wage against age for the Wage data set, which contains income and demographic information for males who reside in the central Atlantic region of the United States. We see the results of fitting a degree-4 polynomial using least squares (solid blue curve). Even though this is a linear regression model like any other, the individual coefficients are not of particular interest. Instead, we look at the entire fitted function across a grid of 63 values for age from 18 to 80 in order to understand the relationship between age and wage.

In Figure 7.1, a pair of dashed curves accompanies the fit; these are $(2\times)$ standard error curves. Let's see how these arise. Suppose we have computed the fit at a particular value of age, x_0 :

$$\hat{f}(x_0) = \hat{\beta}_0 + \hat{\beta}_1 x_0 + \hat{\beta}_2 x_0^2 + \hat{\beta}_3 x_0^3 + \hat{\beta}_4 x_0^4.$$
(7.2)

What is the variance of the fit, i.e. $\operatorname{Var} \hat{f}(x_0)$? Least squares returns variance estimates for each of the fitted coefficients $\hat{\beta}_j$, as well as the covariances between pairs of coefficient estimates. We can use these to compute the estimated variance of $\hat{f}(x_0)$.¹ The estimated *pointwise* standard error of

¹If $\hat{\mathbf{C}}$ is the 5 × 5 covariance matrix of the $\hat{\beta}_j$, and if $\ell_0^T = (1, x_0, x_0^2, x_0^3, x_0^4)$, then $\operatorname{Var}[\hat{f}(x_0)] = \ell_0^T \hat{\mathbf{C}} \ell_0$.

 $f(x_0)$ is the square-root of this variance. This computation is repeated at each reference point x_0 , and we plot the fitted curve, as well as twice the standard error on either side of the fitted curve. We plot twice the standard error because, for normally distributed error terms, this quantity corresponds to an approximate 95% confidence interval.

It seems like the wages in Figure 7.1 are from two distinct populations: there appears to be a high earners group earning more than \$250,000 per annum, as well as a *low earners* group. We can treat wage as a binary variable by splitting it into these two groups. Logistic regression can then be used to predict this binary response, using polynomial functions of age as predictors. In other words, we fit the model

$$\Pr(y_i > 250|x_i) = \frac{\exp(\beta_0 + \beta_1 x_i + \beta_2 x_i^2 + \dots + \beta_d x_i^d)}{1 + \exp(\beta_0 + \beta_1 x_i + \beta_2 x_i^2 + \dots + \beta_d x_i^d)}.$$
 (7.3)

The result is shown in the right-hand panel of Figure 7.1. The gray marks on the top and bottom of the panel indicate the ages of the high earners and the low earners. The solid blue curve indicates the fitted probabilities of being a high earner, as a function of age. The estimated 95% confidence interval is shown as well. We see that here the confidence intervals are fairly wide, especially on the right-hand side. Although the sample size for this data set is substantial (n = 3,000), there are only 79 high earners, which results in a high variance in the estimated coefficients and consequently wide confidence intervals.

7.2**Step Functions**

Using polynomial functions of the features as predictors in a linear model imposes a *global* structure on the non-linear function of X. We can instead use step functions in order to avoid imposing such a global structure. Here we break the range of X into *bins*, and fit a different constant in each bin. This amounts to converting a continuous variable into an *ordered categorical* variable.

step function

In greater detail, we create cutpoints c_1, c_2, \ldots, c_K in the range of X, and then construct K + 1 new variables

ordered categorical variable

$$C_{0}(X) = I(X < c_{1}),$$

$$C_{1}(X) = I(c_{1} \le X < c_{2}),$$

$$C_{2}(X) = I(c_{2} \le X < c_{3}),$$

$$\vdots$$

$$C_{K-1}(X) = I(c_{K-1} \le X < c_{K}),$$

$$C_{K}(X) = I(c_{K} \le X),$$
(7.4)

where $I(\cdot)$ is an *indicator function* that returns a 1 if the condition is true, indicator

function

Piecewise Constant

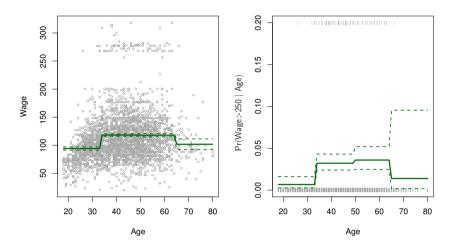


FIGURE 7.2. The Wage data. Left: The solid curve displays the fitted value from a least squares regression of wage (in thousands of dollars) using step functions of age. The dashed curves indicate an estimated 95% confidence interval. Right: We model the binary event wage>250 using logistic regression, again using step functions of age. The fitted posterior probability of wage exceeding \$250,000 is shown, along with an estimated 95% confidence interval.

and returns a 0 otherwise. For example, $I(c_K \leq X)$ equals 1 if $c_K \leq X$, and equals 0 otherwise. These are sometimes called *dummy* variables. Notice that for any value of X, $C_0(X) + C_1(X) + \cdots + C_K(X) = 1$, since X must be in exactly one of the K + 1 intervals. We then use least squares to fit a linear model using $C_1(X), C_2(X), \ldots, C_K(X)$ as predictors²:

$$y_i = \beta_0 + \beta_1 C_1(x_i) + \beta_2 C_2(x_i) + \dots + \beta_K C_K(x_i) + \epsilon_i.$$
(7.5)

For a given value of X, at most one of C_1, C_2, \ldots, C_K can be non-zero. Note that when $X < c_1$, all of the predictors in (7.5) are zero, so β_0 can be interpreted as the mean value of Y for $X < c_1$. By comparison, (7.5) predicts a response of $\beta_0 + \beta_j$ for $c_j \leq X < c_{j+1}$, so β_j represents the average increase in the response for X in $c_j \leq X < c_{j+1}$ relative to $X < c_1$.

An example of fitting step functions to the Wage data from Figure 7.1 is shown in the left-hand panel of Figure 7.2. We also fit the logistic regression model

²We exclude $C_0(X)$ as a predictor in (7.5) because it is redundant with the intercept. This is similar to the fact that we need only two dummy variables to code a qualitative variable with three levels, provided that the model will contain an intercept. The decision to exclude $C_0(X)$ instead of some other $C_k(X)$ in (7.5) is arbitrary. Alternatively, we could include $C_0(X), C_1(X), \ldots, C_K(X)$, and exclude the intercept.

294 7. Moving Beyond Linearity

$$\Pr(y_i > 250|x_i) = \frac{\exp(\beta_0 + \beta_1 C_1(x_i) + \dots + \beta_K C_K(x_i))}{1 + \exp(\beta_0 + \beta_1 C_1(x_i) + \dots + \beta_K C_K(x_i))}$$
(7.6)

in order to predict the probability that an individual is a high earner on the basis of age. The right-hand panel of Figure 7.2 displays the fitted posterior probabilities obtained using this approach.

Unfortunately, unless there are natural breakpoints in the predictors, piecewise-constant functions can miss the action. For example, in the lefthand panel of Figure 7.2, the first bin clearly misses the increasing trend of wage with age. Nevertheless, step function approaches are very popular in biostatistics and epidemiology, among other disciplines. For example, 5-year age groups are often used to define the bins.

7.3 Basis Functions

Polynomial and piecewise-constant regression models are in fact special cases of a *basis function* approach. The idea is to have at hand a family of functions or transformations that can be applied to a variable X: $b_1(X), b_2(X), \ldots, b_K(X)$. Instead of fitting a linear model in X, we fit the model

basis function

$$y_i = \beta_0 + \beta_1 b_1(x_i) + \beta_2 b_2(x_i) + \beta_3 b_3(x_i) + \dots + \beta_K b_K(x_i) + \epsilon_i.$$
(7.7)

Note that the basis functions $b_1(\cdot), b_2(\cdot), \ldots, b_K(\cdot)$ are fixed and known. (In other words, we choose the functions ahead of time.) For polynomial regression, the basis functions are $b_j(x_i) = x_i^j$, and for piecewise constant functions they are $b_j(x_i) = I(c_j \leq x_i < c_{j+1})$. We can think of (7.7) as a standard linear model with predictors $b_1(x_i), b_2(x_i), \ldots, b_K(x_i)$. Hence, we can use least squares to estimate the unknown regression coefficients in (7.7). Importantly, this means that all of the inference tools for linear models that are discussed in Chapter 3, such as standard errors for the coefficient estimates and F-statistics for the model's overall significance, are available in this setting.

Thus far we have considered the use of polynomial functions and piecewise constant functions for our basis functions; however, many alternatives are possible. For instance, we can use wavelets or Fourier series to construct basis functions. In the next section, we investigate a very common choice for a basis function: *regression splines*.

regression spline

7.4 Regression Splines

Now we discuss a flexible class of basis functions that extends upon the polynomial regression and piecewise constant regression approaches that we have just seen.

7.4.1 Piecewise Polynomials

Instead of fitting a high-degree polynomial over the entire range of X, piecewise polynomial regression involves fitting separate low-degree polynomials over different regions of X. For example, a piecewise cubic polynomial works by fitting a cubic regression model of the form

piecewise polynomial regression

$$y_i = \beta_0 + \beta_1 x_i + \beta_2 x_i^2 + \beta_3 x_i^3 + \epsilon_i, \tag{7.8}$$

where the coefficients β_0 , β_1 , β_2 , and β_3 differ in different parts of the range of X. The points where the coefficients change are called *knots*.

For example, a piecewise cubic with no knots is just a standard cubic polynomial, as in (7.1) with d = 3. A piecewise cubic polynomial with a single knot at a point c takes the form

$$y_i = \begin{cases} \beta_{01} + \beta_{11}x_i + \beta_{21}x_i^2 + \beta_{31}x_i^3 + \epsilon_i & \text{if } x_i < c \\ \beta_{02} + \beta_{12}x_i + \beta_{22}x_i^2 + \beta_{32}x_i^3 + \epsilon_i & \text{if } x_i \ge c. \end{cases}$$

In other words, we fit two different polynomial functions to the data, one on the subset of the observations with $x_i < c$, and one on the subset of the observations with $x_i \ge c$. The first polynomial function has coefficients $\beta_{01}, \beta_{11}, \beta_{21}$, and β_{31} , and the second has coefficients $\beta_{02}, \beta_{12}, \beta_{22}$, and β_{32} . Each of these polynomial functions can be fit using least squares applied to simple functions of the original predictor.

Using more knots leads to a more flexible piecewise polynomial. In general, if we place K different knots throughout the range of X, then we will end up fitting K + 1 different cubic polynomials. Note that we do not need to use a cubic polynomial. For example, we can instead fit piecewise linear functions. In fact, our piecewise constant functions of Section 7.2 are piecewise polynomials of degree 0!

The top left panel of Figure 7.3 shows a piecewise cubic polynomial fit to a subset of the Wage data, with a single knot at age=50. We immediately see a problem: the function is discontinuous and looks ridiculous! Since each polynomial has four parameters, we are using a total of eight *degrees of freedom* in fitting this piecewise polynomial model.

degrees of freedom

7.4.2 Constraints and Splines

The top left panel of Figure 7.3 looks wrong because the fitted curve is just too flexible. To remedy this problem, we can fit a piecewise polynomial

knot

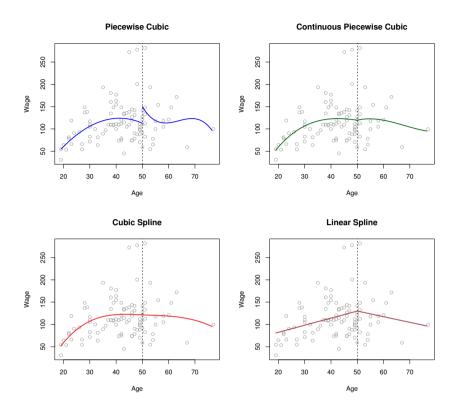


FIGURE 7.3. Various piecewise polynomials are fit to a subset of the Wage data, with a knot at age=50. Top Left: The cubic polynomials are unconstrained. Top Right: The cubic polynomials are constrained to be continuous at age=50. Bottom Left: The cubic polynomials are constrained to be continuous, and to have continuous first and second derivatives. Bottom Right: A linear spline is shown, which is constrained to be continuous.

under the *constraint* that the fitted curve must be continuous. In other words, there cannot be a jump when age=50. The top right plot in Figure 7.3 shows the resulting fit. This looks better than the top left plot, but the V-shaped join looks unnatural.

In the lower left plot, we have added two additional constraints: now both the first and second *derivatives* of the piecewise polynomials are continuous at age=50. In other words, we are requiring that the piecewise polynomial be not only continuous when age=50, but also very *smooth*. Each constraint that we impose on the piecewise cubic polynomials effectively frees up one degree of freedom, by reducing the complexity of the resulting piecewise polynomial fit. So in the top left plot, we are using eight degrees of freedom, but in the bottom left plot we imposed three constraints (continuity, continuity of the first derivative, and continuity of the second derivative)

derivative

and so are left with five degrees of freedom. The curve in the bottom left plot is called a *cubic spline*.³ In general, a cubic spline with K knots uses a total of 4 + K degrees of freedom.

cubic spline

linear spline

In Figure 7.3, the lower right plot is a *linear spline*, which is continuous at **age=50**. The general definition of a degree-d spline is that it is a piecewise degree-d polynomial, with continuity in derivatives up to degree d - 1 at each knot. Therefore, a linear spline is obtained by fitting a line in each region of the predictor space defined by the knots, requiring continuity at each knot.

In Figure 7.3, there is a single knot at age=50. Of course, we could add more knots, and impose continuity at each.

7.4.3 The Spline Basis Representation

The regression splines that we just saw in the previous section may have seemed somewhat complex: how can we fit a piecewise degree-d polynomial under the constraint that it (and possibly its first d - 1 derivatives) be continuous? It turns out that we can use the basis model (7.7) to represent a regression spline. A cubic spline with K knots can be modeled as

$$y_i = \beta_0 + \beta_1 b_1(x_i) + \beta_2 b_2(x_i) + \dots + \beta_{K+3} b_{K+3}(x_i) + \epsilon_i, \qquad (7.9)$$

for an appropriate choice of basis functions $b_1, b_2, \ldots, b_{K+3}$. The model (7.9) can then be fit using least squares.

Just as there were several ways to represent polynomials, there are also many equivalent ways to represent cubic splines using different choices of basis functions in (7.9). The most direct way to represent a cubic spline using (7.9) is to start off with a basis for a cubic polynomial—namely, x, x^2 , and x^3 —and then add one *truncated power basis* function per knot. A truncated power basis function is defined as

truncated power basis

$$h(x,\xi) = (x-\xi)_{+}^{3} = \begin{cases} (x-\xi)^{3} & \text{if } x > \xi \\ 0 & \text{otherwise,} \end{cases}$$
(7.10)

where ξ is the knot. One can show that adding a term of the form $\beta_4 h(x, \xi)$ to the model (7.8) for a cubic polynomial will lead to a discontinuity in only the third derivative at ξ ; the function will remain continuous, with continuous first and second derivatives, at each of the knots.

In other words, in order to fit a cubic spline to a data set with K knots, we perform least squares regression with an intercept and 3 + K predictors, of the form $X, X^2, X^3, h(X, \xi_1), h(X, \xi_2), \ldots, h(X, \xi_K)$, where ξ_1, \ldots, ξ_K are the knots. This amounts to estimating a total of K + 4 regression coefficients; for this reason, fitting a cubic spline with K knots uses K+4 degrees of freedom.

 $^{^{3}\}mathrm{Cubic}$ splines are popular because most human eyes cannot detect the discontinuity at the knots.

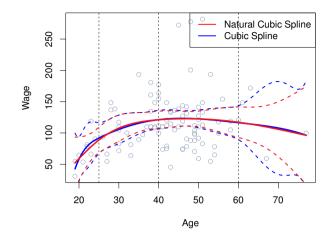


FIGURE 7.4. A cubic spline and a natural cubic spline, with three knots, fit to a subset of the Wage data. The dashed lines denote the knot locations.

Unfortunately, splines can have high variance at the outer range of the predictors—that is, when X takes on either a very small or very large value. Figure 7.4 shows a fit to the Wage data with three knots. We see that the confidence bands in the boundary region appear fairly wild. A *natural spline* is a regression spline with additional *boundary constraints*: the function is required to be linear at the boundary (in the region where X is smaller than the smallest knot, or larger than the largest knot). This additional constraint means that natural splines generally produce more stable estimates at the boundaries. In Figure 7.4, a natural cubic spline is also displayed as a red line. Note that the corresponding confidence intervals are narrower.

natural spline

7.4.4 Choosing the Number and Locations of the Knots

When we fit a spline, where should we place the knots? The regression spline is most flexible in regions that contain a lot of knots, because in those regions the polynomial coefficients can change rapidly. Hence, one option is to place more knots in places where we feel the function might vary most rapidly, and to place fewer knots where it seems more stable. While this option can work well, in practice it is common to place knots in a uniform fashion. One way to do this is to specify the desired degrees of freedom, and then have the software automatically place the corresponding number of knots at uniform quantiles of the data.

Figure 7.5 shows an example on the Wage data. As in Figure 7.4, we have fit a natural cubic spline with three knots, except this time the knot locations were chosen automatically as the 25th, 50th, and 75th percentiles of age. This was specified by requesting four degrees of freedom. The ar-

Natural Cubic Spline

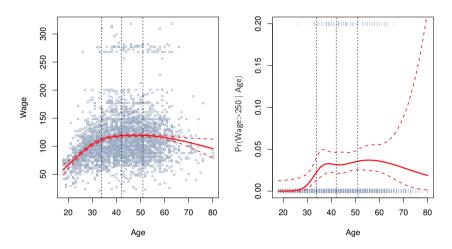


FIGURE 7.5. A natural cubic spline function with four degrees of freedom is fit to the Wage data. Left: A spline is fit to wage (in thousands of dollars) as a function of age. Right: Logistic regression is used to model the binary event wage>250 as a function of age. The fitted posterior probability of wage exceeding \$250,000 is shown. The dashed lines denote the knot locations.

gument by which four degrees of freedom leads to three interior knots is somewhat technical.⁴

How many knots should we use, or equivalently how many degrees of freedom should our spline contain? One option is to try out different numbers of knots and see which produces the best looking curve. A somewhat more objective approach is to use cross-validation, as discussed in Chapters 5 and 6. With this method, we remove a portion of the data (say 10%), fit a spline with a certain number of knots to the remaining data, and then use the spline to make predictions for the held-out portion. We repeat this process multiple times until each observation has been left out once, and then compute the overall cross-validated RSS. This procedure can be repeated for different numbers of knots K. Then the value of K giving the smallest RSS is chosen.

Figure 7.6 shows ten-fold cross-validated mean squared errors for splines with various degrees of freedom fit to the Wage data. The left-hand panel

⁴There are actually five knots, including the two boundary knots. A cubic spline with five knots has nine degrees of freedom. But natural cubic splines have two additional *natural* constraints at each boundary to enforce linearity, resulting in 9 - 4 = 5 degrees of freedom. Since this includes a constant, which is absorbed in the intercept, we count it as four degrees of freedom.

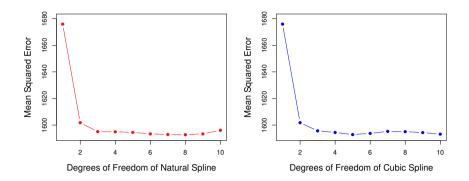


FIGURE 7.6. Ten-fold cross-validated mean squared errors for selecting the degrees of freedom when fitting splines to the Wage data. The response is wage and the predictor age. Left: A natural cubic spline. Right: A cubic spline.

corresponds to a natural cubic spline and the right-hand panel to a cubic spline. The two methods produce almost identical results, with clear evidence that a one-degree fit (a linear regression) is not adequate. Both curves flatten out quickly, and it seems that three degrees of freedom for the natural spline and four degrees of freedom for the cubic spline are quite adequate.

In Section 7.7 we fit additive spline models simultaneously on several variables at a time. This could potentially require the selection of degrees of freedom for each variable. In cases like this we typically adopt a more pragmatic approach and set the degrees of freedom to a fixed number, say four, for all terms.

7.4.5 Comparison to Polynomial Regression

Figure 7.7 compares a natural cubic spline with 15 degrees of freedom to a degree-15 polynomial on the Wage data set. The extra flexibility in the polynomial produces undesirable results at the boundaries, while the natural cubic spline still provides a reasonable fit to the data. Regression splines often give superior results to polynomial regression. This is because unlike polynomials, which must use a high degree (exponent in the highest monomial term, e.g. X^{15}) to produce flexible fits, splines introduce flexibility by increasing the number of knots but keeping the degree fixed. Generally, this approach produces more stable estimates. Splines also allow us to place more knots, and hence flexibility, over regions where the function f seems to be changing rapidly, and fewer knots where f appears more stable.

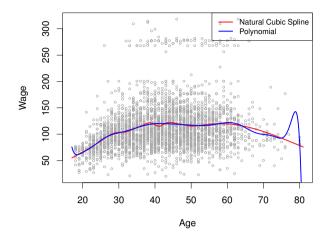


FIGURE 7.7. On the Wage data set, a natural cubic spline with 15 degrees of freedom is compared to a degree-15 polynomial. Polynomials can show wild behavior, especially near the tails.