
Chapter 7

Spatial Point Pattern Analysis

7.1 Introduction

The analysis of point patterns appears in many different areas of research.
In ecology, for example, the interest may be focused on determining the spa-
tial distribution (and its causes) of a tree species for which the locations have
been obtained within a study area. Furthermore, if two or more species have
been recorded, it may also be of interest to assess whether these species are
equally distributed or competition exists between them. Other factors which
force each species to spread in particular areas of the study region may be
studied as well. In spatial epidemiology, a common problem is to determine
whether the cases of a certain disease are clustered. This can be assessed by
comparing the spatial distribution of the cases to the locations of a set of
controls taken at random from the population.

In this chapter, we describe how the basic steps in the analysis of point
patterns can be carried out using R. When introducing new ideas and concepts
we have tried to follow Diggle (2003) as much as possible because this text
offers a comprehensive description of point processes and applications in many
fields of research. The examples included in this chapter have also been taken
from that book and we have tried to reproduce some of the examples and
figures included there.

In general, a point process is a stochastic process in which we observe
the locations of some events of interest within a bounded region A. Diggle
(2003) defines a point process as a ‘stochastic mechanism which generates a
countable set of events’. Diggle (2003) and Möller and Waagepetersen (2003)
give proper definitions of different types of a point process and their main
properties. The locations of the events generated by a point process in the area
of studyA will be called a point pattern. Sometimes, additional covariates may
have been recorded and they will be attached to the locations of the observed
events.
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174 7 Spatial Point Pattern Analysis

The analysis of spatio-temporal point patterns are described in Gelfand
et al. (2010) and Illian et al. (2008). As described in Chap. 6, there are classes
for different types of spatio-temporal point patterns.

Other books covering this subject include Schabenberger and Gotway
(2005, Chap. 3), Waller and Gotway (2004, Chaps. 5 and 6), O’Sullivan and
Unwin (2010, Chaps. 5 and 6), Gaetan and Guyon (2010, Chaps. 3 and 5.5),
and Krivoruchko (2011, Chap. 13). More recently, Cressie and Wikle (2011)
provide a comprehensive summary of the field, including space-time point
patterns.

7.2 Packages for the Analysis of Spatial Point Patterns

There are a number of packages for R which implement different functions
for the analysis of spatial point patterns. The spatial package provides func-
tions described in Venables and Ripley (2002, pp. 430–434), and splancs
(Rowlingson and Diggle, 1993) and spatstat (Baddeley and Turner, 2005)
provide other implementations and additional methods for the analysis of
different types of point processes. The Spatial Task View contains a com-
plete list of all the packages available in R for the analysis of point patterns.
Other packages worth mentioning include spatialkernel, which implements
different kernel functions and methods for the analysis of multivariate point
processes. Given that most of the examples included in this chapter have
been computed using splancs and spatstat, we focus particularly on these
packages.

These packages use different data structures to store the information of
a point pattern. Given that it would be tedious to rewrite all the code in-
cluded in these packages to use sp classes, we need a simple mechanism to
convert between formats. Package maptools offers some functions to convert
between ppp objects representing two-dimensional point patterns (from spat-
stat, which uses old-style classes, see p. 24) and sp classes. Note that, in
addition to the point coordinates, ppp objects include the boundary of the
region where the point data have been observed, whilst sp classes do not,
and it has to be stored separately. Data types used in splancs are based on
a two-column matrix for the coordinates of the point pattern plus a similar
matrix to store the boundary; the package was written before old-style classes
were introduced. Function as.points is provided to convert to this type of
structure. Hence, it is very simple to convert the coordinates from sp classes
to use functions included in splancs.

Section 2.4 describes different types of sp classes to work with point
data. They are SpatialPoints, for simple point data, and SpatialPoints-
DataFrame, when additional covariates are recorded. More information and
examples can be found in the referred section. Hence, it should not be difficult
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to have the data available in the format required for the analysis whatever
package is used.

To illustrate the use of some of the different techniques available for the
analysis of point patterns, we have selected some examples from forest ecol-
ogy, biology, and spatial epidemiology. The point patterns in Fig. 7.1 show
the spatial distribution of cell centres (left), California redwood trees (right),
and Japanese black pine (middle). All data sets have been re-scaled to fit into
a one-by-one square. These data sets are described in Ripley (1977), Strauss
(1975), and Numata (1961) and all of them have been re-analysed in Diggle
(2003).

These data sets are available in package spatstat. This package uses ppp
objects to store point patterns, but packagemaptools provides some functions
to convert between ppp objects and SpatialPoints, as shown in the following
example. First we take the Japanese black pine saplings example, measured
in a square sampling region in a natural forest, reading in the data provided
with spatstat.

> library(spatstat)
> data(japanesepines)

> summary(japanesepines)

Planar point pattern: 65 points
Average intensity 65 points per square unit (one unit = 5.7 metres)

Coordinates are given to 2 decimal places
i.e. rounded to the nearest multiple of 0.01 units (one unit = 5.7 metres)

Window: rectangle = [0, 1] x [0, 1] units
Window area = 1 square unit
Unit of length: 5.7 metres

The summary shows the average intensity over the region of interest; this
region, known as an observation window, is also reported in the summary;
observation windows are stored in objects of class owin. In this case, the
points have been scaled to the unit square already, but the size of the sampling
square can be used to retrieve the actual measurements. Note that spatstat
windows may be of several forms, here the window is a rectangle. When we
coerce a ppp object with a rectangular window to a SpatialPoints object,
the point coordinates will by default be re-scaled to their original values.

> library(maptools)

> spjpines <- as(japanesepines, "SpatialPoints")
> summary(spjpines)

Object of class SpatialPoints
Coordinates:

min max
[1,] 0 5.7
[2,] 0 5.7
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Is projected: NA
proj4string : [NA]
Number of points: 65

We can get back to the unit square using the elide methods discussed in
Chap. 5 as the summary of the output object shows.

> spjpines1 <- elide(spjpines, scale = TRUE, unitsq = TRUE)
> summary(spjpines1)

Object of class SpatialPoints
Coordinates:

min max
[1,] 0 1
[2,] 0 1
Is projected: NA
proj4string : [NA]
Number of points: 65

Getting back to a ppp object is also done by coercing, but if we want to
preserve the actual dimensions, we have to manipulate the owin object be-
longing to the ppp object directly. We return later to see how SpatialPoly-
gons objects may be coerced into owin objects, and how spatstat im objects
can interface with SpatialGrid objects.

> pppjap <- as(spjpines1, "ppp")
> summary(pppjap)

Planar point pattern: 65 points
Average intensity 65 points per square unit

Coordinates are given to 2 decimal places
i.e. rounded to the nearest multiple of 0.01 units

Window: rectangle = [0, 1] x [0, 1] units
Window area = 1 square unit

These point patterns have been obtained by sampling in different regions,
but it is not rare to find examples in which we have different types of events in
the same region. In spatial epidemiology, for example, it is common to have
two types of points: cases of a certain disease and controls, which usually
reflect the spatial distribution of the population. In general, this kind of
point pattern is called a marked point pattern because each point is assigned
to a group and labelled accordingly.

The Asthma data set records the results of a case-control study carried out
in 1992 on the incidence of asthma in children in North Derbyshire (United
Kingdom). This data set has been studied by Diggle and Rowlingson (1994),
Singleton et al. (1995), and Diggle (2003) to explore the relationship between
asthma and the proximity to the main roads and three putative pollution
sources (a coking works, chemical plant, and waste treatment centre). In the
study, a number of relevant covariates were also collected by means of a
questionnaire that was completed by the parents of the children attending



7.2 Packages for the Analysis of Spatial Point Patterns 177

Fig. 7.1 Example of three point patterns re-scaled to fit in the unit square. On the
left, spatial distribution of the location of cell centres (Ripley, 1977); in the middle,
Japanese black pine saplings (Numata, 1961); and on the right, saplings of California
redwood trees (Strauss, 1975)

ten schools in the region. Children having suffered from asthma will act as
cases whilst the remainder of the children included in the study will form the
set of controls. Although this data set is introduced here, the spatial analysis
of case–control data is described in the final part of this chapter.

The data set is available from Prof. Peter J. Diggle’s website and comes
in anonymised form. Barry Rowlingson provided some of the road lines. The
original data were supplied by Dr. Joanna Briggs (University of Leeds, UK).
To avoid computational problems in some of the methods described in this
section, we have removed a very isolated point, which was one of the cases,
and we have selected an appropriate boundary region.

The next example shows how to display the point pattern, including the
boundary of the region (that we have created ourselves) and the location
of the pollution sources using different sp layouts and function spplot (see
Chap. 3 for more details). Given that the data set is a marked point pattern,
we have converted it to a SpatialPointsDataFrame to preserve the type
(case or control) of the events and all the other relevant information. In
addition, we have created a SpatialPolygons object to store the boundary
of the region and a SpatialPointsDataFrame object for the location of the
three pollution sources. Given that the main roads are available, we have
included them as well using a SpatialLines object. The final plot is shown
in Fig. 7.2.

> library(rgdal)
> spasthma <- readOGR(".", "spasthma")
> spbdry <- readOGR(".", "spbdry")
> spsrc <- readOGR(".", "spsrc")
> sproads <- readOGR(".", "sproads")
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Fig. 7.2 Locations of the residence of asthmatic (cases, orange filled tri-
angle) and non-asthmatic (controls, green cross) in North Derbyshire, 1992
Diggle and Rowlingson (1994). The boundary has been taken to contain all points
in the data set. The map shows the pollution sources (brown filled square) and the
main roads (grey lines)

7.3 Preliminary Analysis of a Point Pattern

The analysis of point patterns is focused on the spatial distribution of the
observed events and making inference about the underlying process that gen-
erated them. In particular, there are two main issues of interest: the distri-
bution of events in space and the existence of possible interactions between
them. For a merely descriptive analysis, we would represent the locations of
the point pattern in the study area. This will give us an idea of the distri-
bution of the points, and it can lead to possible hypothesis about the spatial
distribution of the events. Further statistical analyses can be done and they
are described in this section.
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7.3.1 Complete Spatial Randomness

When studying a point process, the most basic test that can be performed
is that of Complete Spatial Randomness (CSR, henceforth). Intuitively, by
CSR we mean that the events are distributed independently at random and
uniformly over the study area. This implies that there are no regions where
the events are more (or less) likely to occur and that the presence of a given
event does not modify the probability of other events appearing nearby.

Informally, this can be tested by plotting the point pattern and observing
whether the points tend to appear in clusters or, on the contrary, they follow a
regular pattern. In any of these cases, the points are not distributed uniformly
because they should be distributed filling all the space in the study area.
Usually, clustered patterns occur when there is attraction (i.e. ‘contagion’)
between points, whilst regular patterns occur when there is inhibition (i.e.
‘competition’) among points.

Figure 7.1 shows three examples of point patterns that have been gen-
erated by different biological mechanisms and seem to have different spatial
distributions. In particular, the plot of the Japanese pine trees (middle) seems
neither clustered nor regularly distributed, whilst the redwood seeds (right)
show a clustered pattern and the cells (left) a regular one. Hence, only the
spatial distribution of Japanese pine trees seems to be compatible with CSR.

To measure the degree of accomplishment of the CSR, several functions
can be computed on the data. These are described in the following sections,
together with methods to measure the uncertainty related to the observed
pattern.

Testing for CSR is covered in Waller and Gotway (2004, pp. 118–126),
O’Sullivan and Unwin (2010, pp. 99–108, including a discussion on
pp. 158–165), and Schabenberger and Gotway (2005, pp. 86–99, including
other methods not presented here).

7.3.2 G Function: Distance to the Nearest Event

The G function measures the distribution of the distances from an arbitrary
event to its nearest event. If these distances are defined as di=minj{dij , ∀j "=i},
i = 1, . . . , n, then the G function can be estimated as

Ĝ(r) =
#{di : di ≤ r, ∀i}

n
,
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where the numerator is the number of elements in the set of distances that
are lower than or equal to d and n is the total number of points. Under CSR,
the value of the G function is

G(r) = 1− exp{−λπr2},

where λ represents the mean number of events per unit area (or intensity).
The compatibility with CSR of the point pattern can be assessed by

plotting the empirical function Ĝ(d) against the theoretical expectation. In
addition, point-wise envelopes under CSR can be computed by repeatedly
simulating a CSR point process with the same estimated intensity λ̂ in the
study region (Diggle, 2003, p. 13) and check whether the empirical function
is contained inside. The next chunk of code shows how to compute this by
using spatstat functions Gest and envelope. The results have been merged
in a data frame in order to use conditional Lattice graphics.

> set.seed(120109)
> r <- seq(0, sqrt(2)/6, by = 0.005)
> envjap <- envelope(as(spjpines1, "ppp"), fun = Gest,
+ r = r, nrank = 2, nsim = 99)
> envred <- envelope(as(spred, "ppp"), fun = Gest, r = r,
+ nrank = 2, nsim = 99)
> envcells <- envelope(as(spcells, "ppp"), fun = Gest,
+ r = r, nrank = 2, nsim = 99)
> Gresults <- rbind(envjap, envred, envcells)
> Gresults <- cbind(Gresults, y = rep(c("JAPANESE", "REDWOOD",
+ "CELLS"), each = length(r)))

Figure 7.3 shows the empirical function Ĝ(r) against G(r) together with
the 96% pointwise envelopes (because nrank=2) of the same point pattern
examined using the G function. The plot is produced by taking the pairs
(G(r), Ĝ(r)) for a set of reasonable values of the distance r, so that in the x-
axis we have the values of the theoretical value of G(r) under CSR and in the
y-axis the empirical function Ĝ(r). The results show that only the Japanese
trees seem to be homogeneously distributed, whilst the redwood seeds show
a clustered pattern (values of Ĝ(r) above the envelopes) and the location of
the cells shows a more regular pattern (values of Ĝ(r) below the envelopes).

envelope is a very flexible function that can be used to compute Monte
Carlo envelopes of a certain type of functions. Basically, it works by ran-
domly simulating a number of point patterns so that the summary function
is computed for all of them. The resulting values are then used to compute
point-wise (i.e. at different distances) or global Monte Carlo envelopes. en-
velope can be passed the way the point patterns are generated (by default,
CSR). The reader is referred to the manual page for more information.
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Fig. 7.3 Envelopes and observed values of the G function for three point patterns

7.3.3 F Function: Distance from a Point
to the Nearest Event

The F function measures the distribution of all distances from an arbitrary
point of the plane to its nearest event. This function is often called the empty
space function because it is a measure of the average space left between events.
Under CSR, the expected value of the F function is

F (r) = 1− exp{−λπr2}.

Hence, we can compare the estimated value of the F function to its theo-
retical value and compute simulation envelopes as before.

> set.seed(30)
> Fenvjap <- envelope(as(spjpines1, "ppp"), fun = Fest,
+ r = r, nrank = 2, nsim = 99)
> Fenvred <- envelope(as(spred, "ppp"), fun = Fest, r = r,
+ nrank = 2, nsim = 99)
> Fenvcells <- envelope(as(spcells, "ppp"), fun = Fest,
+ r = r, nrank = 2, nsim = 99)
> Fresults <- rbind(Fenvjap, Fenvred, Fenvcells)
> Fresults <- cbind(Fresults, y = rep(c("JAPANESE", "REDWOOD",
+ "CELLS"), each = length(r)))

Figure 7.4 shows the empirical F functions and their associated 96% en-
velopes (because nrank=2) for the three data sets presented before. The
Japanese data are compatible with the CSR hypothesis, whereas the cells
point pattern shows a regular pattern (F̂ (r) is above the envelopes) and the
redwood points seem to be clustered, given the low values of F̂ (r).
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Fig. 7.4 Envelopes and observed values of the F function for three point patterns

7.4 Statistical Analysis of Spatial Point Processes

A first description of the point pattern can be done by estimating the spatial
statistical density from the observed data. The spatial density has the same
properties as a univariate density, but its domain is the study area where the
point process takes place.

As an alternative function to measure the spatial distribution of the events,
we can work with the intensity λ(x) of the point process, which is proportional
to its spatial density. The constant of proportionality is the expected number
of events of the point process in the area A. That is, for two point processes
with the same spatial density but different intensities, the number of events
observed will be higher for the process with the highest intensity.

The intensity and spatial density are part of the first-order properties
because they measure the distribution of events in the study region. Note
that neither the intensity nor the spatial density give any information on
the interaction between two arbitrary points. This is measured by second-
order properties, which reflect any tendency of the events to appear clustered,
independently, or regularly spaced.

First- and second-order properties are properly defined in, for example,
Diggle (2003, p. 43) and Möller and Waagepetersen (2003, Chap. 4). We fo-
cus on the estimation of the intensity and the assessment of clustering, as
explained in the following sections. Waller and Gotway (2004, pp. 130–146)
and Schabenberger and Gotway (2005, pp. 90–103, 110–112) discuss the es-
timation of the intensity of a point pattern and the assessment of clustering
as well.

The separation between first- and second-order properties can be difficult
to disentangle without further assumptions. For example, do groups of events
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appear at a specific location because the intensity is higher there or because
events are clustered? In general, it is assumed that interaction between points
occurs at small scale, while large-scale variation is reflected on the intensity
(Diggle, 2003, p. 143). Waller and Gotway (2004, 146–147) also discuss the
roles of first and second-order properties.

In the remainder of this chapter, we focus on Poisson processes because
they offer a simple approach to a wide range of problems. Loosely, we can dis-
tinguish between homogeneous and inhomogeneous Poisson point processes
(HPP and IPP, respectively). Both HPP and IPP assume that the events
occur independently and are distributed according to a given intensity. The
main difference between the two point processes is that the HPP assumes
that the intensity function is constant, while the intensity of an IPP varies
spatially. In a sense, the IPP is a generalisation of the HPP or, inversely, the
HPP can be regarded as an IPP with constant intensity. Poisson processes
are also described in Schabenberger and Gotway (2005, pp. 81–86, 107–110)
and Waller and Gotway (2004, pp. 126–130).

Note that other spatial processes may be required when more complex data
sets are to be analysed. For example, when events are clustered, points do
not occur independently of each other and a clustered process would be more
appropriate. See Diggle (2003, Chap. 5) and Möller andWaagepetersen (2003)
for a wider description of other spatial point processes. spatstat provides a
number of functions to fit some of the models described therein.

7.4.1 Homogeneous Poisson Processes

A homogeneous Poisson process is characterised as representing the kind of
point process in which all events are independently and uniformly distributed
in the region A where the point process occurs. This means that the location
of one point does not affect the probabilities of other points appearing nearby
and that there are no regions where events are more likely to appear.

More formally, Diggle (2003) describes an HPP in a region A as fulfilling:

1. The number of events in A, with area |A|, is Poisson distributed with
mean λ|A|, where λ is the constant intensity of the point process.

2. Given n observed events in region A, they are uniformly distributed in A.

The HPP is also stationary and isotropic. It is stationary because the in-
tensity is constant and the second-order intensity depends only on the relative
positions of two points (i.e. direction and distance). In addition, it is isotropic
because the second-order intensity is invariant to rotation. Hence, the point
process has constant intensity and its second-order intensity depends only on
the distance between the two points, regardless of the relative positions of
the points.
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These constraints reflect that the intensity of the point process is constant,
that is λ(x) = λ > 0, ∀x ∈ A, and that events appear independently of each
other. Hence, the HPP is the formal definition of a point process which is
CSR.

7.4.2 Inhomogeneous Poisson Processes

In most cases assuming that a point process under study is homogeneous
is not realistic. Clear examples are the distribution of the population in a
city or the location of trees in a forest. In both cases, different factors affect
the spatial distribution. In the case of the population, it can be the type of
housing, neighbourhood, etc., whilst in the case of the trees, it can be the
environmental factors such as humidity, quality of the soil, slope and others.

The IPP is a generalisation of the HPP, which allows for a non-constant
intensity. The same principle of independence between events holds, but now
the spatial variation can be more diverse, with events appearing more likely
in some areas than others. As a result, the intensity will be a generic function
λ(x) that varies spatially.

7.4.3 Estimation of the Intensity

As stated previously, the intensity of an HPP point process is constant. Hence,
the problem of estimating the intensity is the problem of estimating a constant
function λ such as the expected number of events in regionA (

∫
A λdx) is equal

to the observed number of cases. This is the volume under the surface defined
by the intensity in region A. Once we have observed the (homogeneous) point
process, we have the locations of a set of n points. So, an unbiased estimator
of the intensity is n/|A|, where |A| is the area of region A. This ensures that
the expected number of points is, in fact, the observed number of points.

For IPP, the estimation of the intensity can be done in different ways. It
can be done non-parametrically by means of kernel smoothing or paramet-
rically by proposing a specific function for the intensity whose parameters
are estimated by maximising the likelihood of the point process. If we have
observed n points {xi}ni=1, the form of a kernel smoothing estimator is the
following (Diggle, 1985; Berman and Diggle, 1989):

λ̂(x) =
1

h2

n∑

i=1

κ
( ||x− xi||

h

)
/q(||x||), (7.1)

where κ(u) is a bivariate and symmetrical kernel function. q(||x||) is a border
correction to compensate for the missing observations that occur when x
is close to the border of the region A. Bandwidth h measures the level of
smoothing. Small values will produce very peaky estimates, whilst large values
will produce very smooth functions.
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Silverman (1986) gives a detailed description of different kernel functions
and their properties. In the examples included in this chapter, we have used
a bivariate Gaussian kernel and the quartic kernel (also known as biweight),
whose expression in two dimensions is

κ(u) =

{
3
π (1− ‖u‖2)2 if u ∈ (−1, 1)

0 Otherwise
,

where ‖u‖2 denotes the squared norm of point u = (u1, u2) equal to
u2
1+u2

2. Figure 7.5 shows an example of estimation of the intensity by kernel
smoothing in a one-dimensional setting, but the same ideas are used in a
spatial framework.
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Fig. 7.5 Example of the contribution of the different points to the estimate of the
intensity. Dashed lines represent the kernel around each observation, whilst the solid
line is the estimate of the intensity

Methods for the selection of the bandwidth of kernel smoothers in a general
setting are given by Silverman (1986). In the context of spatial analysis, a
few proposals have been made so far, but it is not clear how to choose an
optimal value for the bandwidth in the general case. It seems reasonable to
use several values depending on the process under consideration, and choose
a value that seems plausible.

Diggle (1985) and Berman and Diggle (1989) propose a criterion based on
minimising the Mean Square Error (MSE) of the kernel smoothing estimator
when the underlying point process in a stationary Cox process (see Diggle,
2003, p. 68, for details). However, it can still be used as a general exploratory
method and a guidance in order to choose the bandwidth. Kelsall and Diggle
(1995a,b, 1998) propose and compare different methods for the selection of
the bandwidth when a case–control point pattern is used. Clark and Lawson
(2004) have compared these and other methods for disease mapping, including
some methods for the automatic selection of the bandwidth.

We have applied the approach proposed by Berman and Diggle (1989),
which is implemented in functions mse2d (splancs) and bw.diggle (spatstat)
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to the redwood data set. Note that these two functions can provide differ-
ent optimal bandwidths because they rely on kernel2d (which implements a
quartic kernel) and density (which implements a Gaussian kernel), respec-
tively. This is shown in the following example:

> library(splancs)

> mserwq <- mse2d(as.points(coordinates(spred)), as.points(list(x = c(0,
+ 1, 1, 0), y = c(0, 0, 1, 1))), 100, 0.15)
> bwq <- mserwq$h[which.min(mserwq$mse)]
> bwq

[1] 0.039

> mserw <- bw.diggle(as(spred, "ppp"))
> bw <- as.numeric(mserw)
> bw

[1] 0.01977539

Figure 7.6 shows different values of the bandwidth and their associated
values of the MSE. The value that minimises it for the Gaussian kernel is
0.01978, but it should be noted that the curve is very flat around that point,
which means that many other values of the bandwidth are plausible. This is
a common problem in the analysis of real data sets.
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Fig. 7.6 Values of the mean square error for several values of the bandwidth using
the redwood data set. Thes values that minimise the MSE are 0.039 (quartic kernel)
and 0.0198 (Gaussian kernel) but many other values seem plausible, given the flatness
of the curves

It must be noted that when estimating the intensity by kernel smoothing,
the key choice is not that of the kernel function but the bandwidth. Different
kernels will produce very similar estimates for equivalent bandwidths, but the
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same kernel with different bandwidths will produce dramatically different
results. An example of this fact is shown in Fig. 7.7, where four different
bandwidths have been used to estimate the intensity of the redwood data.

Kernel smoothing using a quartic kernel can be performed with function
spkernel2d (in package splancs) as follows:

> library(splancs)
> poly <- as.points(list(x = c(0, 0, 1, 1), y = c(0, 1,
+ 1, 0)))
> sG <- Sobj_SpatialGrid(spred, maxDim = 100)$SG
> grd <- slot(sG, "grid")
> summary(grd)
> k0 <- spkernel2d(spred, poly, h0 = bw, grd)
> k1 <- spkernel2d(spred, poly, h0 = 0.05, grd)
> k2 <- spkernel2d(spred, poly, h0 = 0.1, grd)
> k3 <- spkernel2d(spred, poly, h0 = 0.15, grd)
> df <- data.frame(k0 = k0, k1 = k1, k2 = k2, k3 = k3)
> kernels <- SpatialGridDataFrame(grd, data = df)
> summary(kernels)

Package spatstat provides similar functions to estimate the intensity by
kernel smoothing using an isotropic Gaussian kernel. We have empirically
adjusted the value of the bandwidth to make the kernel estimates compara-
ble. See Härdle et al. (2004, Sect. 3.4.2) for a full discussion. When calling
density on a ppp object (which in fact calls density.ppp), we have used
the additional arguments dimxy and xy to make sure that the grid used to
compute the estimates is compatible with that stored in kernels. Finally,
the kernel estimate is returned in an im class that is converted into a Spa-
tialGridDataFrame and the values incorporated into kernels.

> cc <- coordinates(kernels)
> xy <- list(x = cc[, 1], y = cc[, 2])
> k4 <- density(as(spred, "ppp"), 0.5 * bw, dimyx = c(100,
+ 100), xy = xy)
> kernels$k4 <- as(k4, "SpatialGridDataFrame")$v
> k5 <- density(as(spred, "ppp"), 0.5 * 0.05, dimyx = c(100,
+ 100), xy = xy)
> kernels$k5 <- as(k5, "SpatialGridDataFrame")$v
> k6 <- density(as(spred, "ppp"), 0.5 * 0.1, dimyx = c(100,
+ 100), xy = xy)
> kernels$k6 <- as(k6, "SpatialGridDataFrame")$v
> k7 <- density(as(spred, "ppp"), 0.5 * 0.15, dimyx = c(100,
+ 100), xy = xy)
> kernels$k7 <- as(k7, "SpatialGridDataFrame")$v
> summary(kernels)

7.4.4 Likelihood of an Inhomogeneous Poisson Process

The previous procedure to estimate the intensity is essentially non-parametric.
Alternatively, a specific parametric or semi-parametric form for the intensity
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Fig. 7.7 Different estimates of the intensity of the redwood data set using Quartic
(Q) and Gaussian (G) kernels and different values of the bandwidth

may be of interest (e.g. to include available covariates). Standard statisti-
cal techniques, such as the maximisation of the likelihood, can be used to
estimate the parameters that appear in the expression of the intensity.

The expression of the likelihood can be difficult to work out for many point
processes. However, in the case of the IPP (and, hence, the HPP) it has a
very simple expression. The log-likelihood of a realisation of n independent
events of an IPP with intensity λ(x) is (Diggle, 2003, p. 104)

L(λ) =
n∑

i=1

logλ(xi)−
∫

A
λ(x) dx,

where
∫
A λ(x) dx is the expected number of cases of the IPP with intensity

λ(x) in region A.
When the intensity of the point process is estimated parametrically, the

likelihood can be maximised to obtain the estimates of the parameters of the
model. Diggle (2003, p. 104) suggests a log-linear model

logλ(x) =
p∑

j=1

βjzj(x)

using covariates zj(x), j = 1, . . . , p measured at a location x. These models
can be fit using standard numerical integration techniques.

The following example defines the log-intensity (loglambda) at a given
point x = (x1, x2) using the parametric specification given by
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logλ(x) = α+ β1x1 + β2x2 + β3x
2
1 + β4x

2
2 + β5x1 ∗ x2. (7.2)

This expression is in turn used to construct the likelihood of an IPP (L).
Function adaptIntegrate (from the cubature package) is used to compute
numerically the integral that appears in the expression of the likelihood.

> loglambda <- function(x, alpha, beta) {
+ l <- alpha + sum(beta * c(x, x * x, prod(x)))
+ return(l)
+ }
> L <- function(alphabeta, x) {
+ l <- apply(x, 1, loglambda, alpha = alphabeta[1],
+ beta = alphabeta[-1])
+ l <- sum(l)
+ intL <- adaptIntegrate(lowerLimit = c(0, 0), upperLimit = c(1,
+ 1), fDim = 1, tol = 1e-08, f = function(x, alpha = alphabeta[1],
+ beta = alphabeta[-1]) {
+ exp(loglambda(x, alpha, beta))
+ })
+ l <- l - intL$integral
+ return(l)
+ }

The following example uses the locations of maple trees from the Lansing
Woods data set (Gerard, 1969) in order to show how to fit a parametric inten-
sity using (7.2). The parameters are estimated by maximising the likelihood
using function optim.

> library(cubature)
> data(lansing)
> x <- as.points(lansing[lansing$marks == "maple", ])

> optbeta <- optim(par = c(log(514), 0, 0, 0, 0, 0), fn = L,
+ control = list(maxit = 1000, fnscale = -1), x = x)

The values of the coefficients α,β1, . . . ,β5 are 5.56, 5.66, −0.963, −5.14,
−1.16, 0.959, for a value of the (maximised) likelihood of 2,778.3. Figure 7.8
shows the location of the maple trees and the estimated intensity according
to parametric model in (7.2). See Diggle (2003, Chap. 7) for a similar analysis
using all the tree species in the Lansing Woods data set.

The same example can be run using function ppm from spatstat as follows
(x and y representing the coordinates of the point pattern):

> lmaple <- lansing[lansing$marks == "maple", ]
> ppm(Q = lmaple, trend = ~x + y + I(x^2) + I(y^2) + I(x *
+ y))

Nonstationary multitype Poisson process
Possible marks:
blackoak hickory maple misc redoak whiteoak

Trend formula: ~x + y + I(x^2) + I(y^2) + I(x * y)
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Fig. 7.8 Location of maple trees from the Lansing data set and their estimated
parametric intensity using model (7.2)

Fitted coefficients for trend formula:
(Intercept) x y I(x^2) I(y^2)

3.7310742 5.6400643 -0.7663636 -5.0115142 -1.1983209
I(x * y)
0.6375824

Estimate S.E. Ztest CI95.lo CI95.hi
(Intercept) 3.7310742 0.2542004 na 3.2328505 4.22929795
x 5.6400643 0.7990009 *** 4.0740514 7.20607727
y -0.7663636 0.6990514 -2.1364792 0.60375200
I(x^2) -5.0115142 0.7011631 *** -6.3857686 -3.63725974
I(y^2) -1.1983209 0.6428053 -2.4581962 0.06155433
I(x * y) 0.6375824 0.6989167 -0.7322691 2.00743391

As the authors mention in the manual page, ppm can be compared to glm
because it can be used to fit a specific type of point process model to a
particular point pattern. In this case, the family argument used in glm to
define the model is substituted by interaction, which defines the point
process to be fit. By default, a Poisson point process is used, but many other
point processes can be fitted (see manual page for details).

7.4.5 Second-Order Properties

Second-order properties measure the strength and type of the interactions
between events of the point process. Hence, they are particularly interesting
if we are keen on studying clustering or competition between events.
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Informally, the second-order intensity of two points x and y reflects the
probability of any pair of events occurring in the vicinities of x and y, respec-
tively. Diggle (2003, p. 43) and Möller and Waagepetersen (2003, Chap. 4)
give a more formal description of the second-order intensity. Schabenberger
and Gotway (2005, pp. 99–103) and Waller and Gotway (2004, pp. 137–147)
also discuss second-order properties and the role of the K-function.

An alternative way of measuring second-order properties when the spatial
process is HPP is by means of the K-function (Ripley, 1976, 1977). The
K-function measures the number of events found up to a given distance of
any particular event and it is defined as

K(s) = λ−1E[N0(s)],

where E[.] denotes the expectation and N0(s) represents the number of fur-
ther events up to a distance s around an arbitrary event. To compute this
function, Ripley (1976) also proposed an unbiased estimate equal to

K̂(s) = (n(n− 1))−1|A|
n∑

i=1

∑

j "=i

w−1
ij |{xj : d(xi, xj) ≤ s}|, (7.3)

where wij are weights equal to the proportion of the area inside the region
A of the circle centred at xi and radius d(xi, xj), the distance between xi

and xj .
The value of the K-function for an HPP is K(s) = πs2. By comparing

the estimated value K̂(s) to the theoretical value we can assess what kind of
interaction exists. Usually, we assume that these interactions occur at small
scales, and so will be interested in relatively small values of s. Values of K̂(s)
higher than πs2 are characteristic of clustered processes, whilst values smaller
than that are found when there exists competition between events (regular
pattern).

> set.seed(30)
> Kenvjap <- envelope(as(spjpines1, "ppp"), fun = Kest,
+ r = r, nrank = 2, nsim = 99)
> Kenvred <- envelope(as(spred, "ppp"), fun = Kest, r = r,
+ nrank = 2, nsim = 99)
> Kenvcells <- envelope(as(spcells, "ppp"), fun = Kest,
+ r = r, nrank = 2, nsim = 99)
> Kresults <- rbind(Kenvjap, Kenvred, Kenvcells)
> Kresults <- cbind(Kresults, y = rep(c("JAPANESE", "REDWOOD",
+ "CELLS"), each = length(r)))

Figure 7.9 shows the estimated K-function minus the theoretical value
under CSR of the three point patterns that we have considered before. Note
that the biological interpretations must be made cautiously because the un-
derlying mechanisms are quite different and the scale of the interactions (if
any) will probably be different for each point pattern. This is reflected in two
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Fig. 7.9 Envelopes and observed values of Ripley’s K-function for three point pat-
terns

ways: the width of the envelopes, which reflects the variability of the process
under the null hypothesis of CSR, and the scale of the interaction. This seems
to exist only for the cells, which follow a regular pattern, and the redwood
seeds, which seem to be clustered. The Japanese trees point pattern is com-
patible with CSR because the estimated K-function is contained within the
envelopes.

7.4.5.1 Inhomogeneous K-Function

Baddeley et al. (2000) propose a version of theK-function for non-homogeneous
point processes, in particular, for the class of point processes which are second-
order reweighted-stationary, which includes IPPs. This means that the second-
order intensity of two points, divided by their respective intensities, is
stationary. The inhomogeneous K-function is used in Sect. 7.5.5 in the anal-
ysis of case–control point patterns.

7.5 Some Applications in Spatial Epidemiology

In this section we focus on different applications of the analysis of point
patterns in Spatial Epidemiology. Gatrell et al. (1996) and Diggle (2003)
describe most of the methods contained here, but a comprehensive description
of spatial methods for the analysis of epidemiological data can be found in
Elliott et al. (2000) and Waller and Gotway (2004). Furthermore, Chap. 10
describes the analysis of epidemiological data when they are aggregated.
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The distribution of the cases of a certain disease can be regarded as the
realisation of a point process, which reflects the underlying distribution of
the population (which usually is not homogeneous) plus any other risk factors
related to the disease and that are likely to depend on the subjects. Hence, we
need to have accurate records of the locations of the disease cases, which can
also include additional information on the individuals such as age, gender,
and others.

In a spatial setting, the primary interest is on the spatial distribution of
the cases, but any underlying risk factor that affects this spatial distribution
should be taken into account. It is clear that looking solely at the spatial
distribution of the cases in order to detect areas of high incidence is use-
less because the distribution of the cases will reflect that of the population.
To overcome this problem, it would be necessary to have an estimate of the
spatial distribution of the population so that it can be compared to that of
the cases. For this reason, a set of controls can be randomly selected from
the population at risk so that its spatial variation can be estimated Prince
et al. (see, e.g. 2001).

Different authors have approached this problem in different ways. Diggle
and Chetwynd (1991), for example compute the difference of the homoge-
neous K-function of cases and controls. Kelsall and Diggle (1995a,b) use
non-parametric estimates of the distribution of the ratio between the inten-
sities of cases and controls (i.e. the relative risk). Kelsall and Diggle (1998)
propose a similar model and the use of binary regression and additive mod-
els to account for covariates and a smoothing term to model the residual
spatial variation. More recently, Diggle et al. (2007) use the inhomogeneous
K-function to compare the spatial distribution of cases and controls after
accounting for the effect of relevant covariates.

Many of these methods are also covered, including new examples, and dis-
cussed in Schabenberger and Gotway (2005, pp. 103–122),Waller and Gotway
(2004, Chap. 6), O’Sullivan and Unwin (2010, see the discussion in Chap. 6),
Illian et al. (2008) and Cressie and Wikle (2011, Sect. 4.3). Several chapters
in Gelfand et al. (2010) also the analysis of case–control and marked point
patterns.

7.5.1 Case–Control Studies

As we need to estimate the spatial distribution of the population, a number
of individuals can be taken at random to make a set of controls. Controls are
often selected using the population register or, if it is not available, the events
of another non-related disease (Diggle, 1990). Furthermore, some strategies,
such as stratification and matching (Jarner et al., 2002), can be done in order
to account for other sources of confounding, such as age and sex. As discussed
by Diggle (2000) when matching is used in the selection of the controls, the
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hypothesis of random selection from the population is violated and specific
methods to handle this are required (Diggle et al., 2000; Jarner et al., 2002).

In general, we have a set of n1 cases and n0 controls. Conditioning on
the number of cases and controls, we can assume that they are realisations
of two IPP with intensities λ1(x) and λ0(x), respectively. In this setting,
assuming that the distribution of cases and controls is the same means that
the intensities λ1(x) and λ0(x) are equal up to a proportionality constant,
which is equal to the ratio between n1 and n0: λ1(x) =

n1
n0

λ0(x). Note that
the ratio between cases and controls is determined only by the study design.

7.5.1.1 Spatial Variation of the Relative Risk

Kelsall and Diggle (1995a,b) consider the estimator of the disease risk given by
the ratio between the intensity of the cases and controls ρ(x) = λ1(x)/λ0(x)
in order to assess the variation of the risk. Under the null hypothesis of equal
spatial distribution, the ratio is a constant ρ0 = n1/n0.

Alternatively, a risk estimate r(x) can be estimated by working with the
logarithm of the ratio of the densities of cases and controls:

r(x) = log(f(x)/g(x)), (7.4)

f(x) = λ1(x)/
∫
A λ1(x) dx and g(x) = λ0(x)/

∫
A λ0(x) dx, respectively. In

this case, the null hypothesis of equal spatial distributions becomes r(x) = 0.
The advantage of this approach is that 0 is the reference value for equal spa-
tial distribution without regarding the number of cases and controls. Unfor-
tunately, this presents several computational problems because the intensity
of the controls may be zero at some points, as addressed by, for example,
Waller and Gotway (2004, pp. 165–166).

Kelsall and Diggle (1995a) propose the use of a kernel smoothing to es-
timate each intensity and evaluate different alternatives to estimate the op-
timum bandwidth for each kernel smoothing. They conclude that the best
option is to select the bandwidth by cross-validation and use the same band-
width in both cases.

They choose the bandwidth that minimises the following criterion:

CV (h) = −
∫

A
r̂h(x)

2 dx− 2n−1
1

n1∑

i=1

r̂−i
h (xi)/f̂

−i
h (xi)

+ 2n−1
0

n1+n0∑

i=n1+1

r̂−i
h (xi)/ĝ

−i
h (xi),

where the superscript −i means that the function is computed by removing
the ith point.
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As discussed in Diggle et al. (2007), these automatic methods should be
used as a guidance when estimating the bandwidth. For this reason, we have
preferred to set the bandwidth manually to a value of 0.06, which provides a
reasonable degree of smoothing. In the following example, we have also rela-
belled the point pattern marks so that the first point type is set to ‘control’.
We will need this later when using function relrisk to compute the binary
regression estimator.

> bwasthma <- 0.06
> pppasthma <- as(spasthma, "ppp")
> pppasthma$window <- as(spbdry, "owin")
> marks(pppasthma) <- relevel(pppasthma$marks$Asthma, "control")

The risk ratio can be computed easily by estimating the intensity of cases
and controls first, and then taking the ratio (as shown below) after using the
spkernel2d function from splancs or density from spatstat.

First of all, the point locations are divided between cases and controls and
the intensities of each subset calculated for grid cells lying within the study
area, using the chosen bandwidth. The splancs package uses a simple form of
single polygon boundary, while spatstat can use multiple separate polygons
(SpatialPolygons objects can be coerced to suitable owin objects). In the
following lines we show how to compute the intensity of cases and controls
and then the relative risk using density.

> cases <- unmark(subset(pppasthma, marks(pppasthma) ==
+ "case"))
> ncases <- npoints(cases)
> controls <- unmark(subset(pppasthma, marks(pppasthma) ==
+ "control"))
> ncontrols <- npoints(controls)
> kcases <- density(cases, bwasthma)
> kcontrols <- density(controls, bwasthma)

The results are in an im object (a Pixel Image Object), which is a square
grid with missing values in the points outside the study area. We can first co-
erce this object to a SpatialGridDataFrame object to hold them and coerce
to a SpatialPixelsDataFrame to drop the missing cells.

> spkratio0 <- as(kcases, "SpatialGridDataFrame")
> names(spkratio0) <- "kcases"
> spkratio0$kcontrols <- as(kcontrols, "SpatialGridDataFrame")$v
> spkratio <- as(spkratio0, "SpatialPixelsDataFrame")
> spkratio$kratio <- spkratio$kcases/spkratio$kcontrols
> spkratio$logratio <- log(spkratio$kratio) - log(ncases/ncontrols)

To assess departure from the null hypothesis, they propose the following
test statistic:

T =

∫

A
(ρ(x)− ρ0)

2 dx.
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This integral can be estimated up to a proportionality constant by computing
ρ(x) on a regular grid of points {si, i = 1, . . . , p} and computing the sum of
the values {(ρ(si)− ρ0)2, i = 1, . . . , p}. Hence, an estimate of T is given by

T̂ = |c|
p∑

i=1

(ρ̂(si)− ρ̂0)
2,

where |c| is the area of the cells of the grid, ρ̂0 is n1/n0, and ρ̂(x) the estimate
of the risk ratio.

Note that the former test is to assess whether there is constant risk all over
the study region. However, risk is likely to vary spatially and another appro-
priate test can be done by substituting ρ0 for ρ̂(x) (Kelsall and Diggle, 1995a).
Now we are testing for significance of risk given that we assume that its vari-
ation is not homogeneous (i.e. equal to ρ̂(x)) and the test statistic is

T =

∫

A
(ρ(x) − ρ̂(x))2 dx.

Significance of the observed value of the test statistic can be computed by
means of a Monte Carlo test Kelsall and Diggle (1995b). In this test, we com-
pute k values of the test statistic T by re-labelling cases and controls (keeping
n1 and n0 fixed) and calculating a new risk ratio ρ̂i(x) i = 1, . . . , n for each
new set of cases and controls. This will provide a series of values T 1, . . . , T k

under the null hypothesis. If we call T 0 the value of T for the observed data
set, the significance (p-value) can be computed by taking (t+1)/(k+1), where
t is the number of values of T i, i = 1, . . . , n greater than T 0.

The Monte Carlo test is based on the fact that cases and controls are
equally distributed under the null hypothesis. In that case, if we change the
label of a case to be a control (or vice versa), the new set of cases (or controls)
still have the same spatial distribution and will have the same risk function
ρ(x). If that is not the case, then the re-labelling of cases and controls will
produce different risk functions.

We will use the previous SpatialPixelsDataFrame, which only contain
points in the study area, to set up objects to hold the results for the re-
labelled cases and controls:

> niter <- 99
> ratio <- rep(NA, niter)
> pvaluemap <- rep(0, nrow(spkratio))
> rlabelratio <- matrix(NA, nrow = niter, ncol = nrow(spkratio))

The probability map is calculated by repeating the re-labelling process
niter times, and tallying the number of times that the observed kernel den-
sity ratio is less than the re-labelled ratios. In the loop, the first commands
carry out the re-labelling from the full set of points, and the remainder cal-
culate the ratio and store the results:
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> set.seed(1)
> for (i in 1:niter) {
+ pppasthma0 <- rlabel(pppasthma)
+ casesrel <- unmark(subset(pppasthma0, marks(pppasthma0) ==
+ "case"))
+ controlsrel <- unmark(subset(pppasthma0, marks(pppasthma0) ==
+ "control"))
+ kcasesrel <- density(casesrel, bwasthma)
+ kcontrolsrel <- density(controlsrel, bwasthma)
+ kratiorel <- eval.im(kcasesrel/kcontrolsrel)
+ rlabelratio[i, ] <- as(as(kratiorel, "SpatialGridDataFrame"),
+ "SpatialPixelsDataFrame")$v
+ pvaluemap <- pvaluemap + (spkratio$kratio < rlabelratio[i,
+ ])
+ }

Figure 7.10 shows the kernel ratio of cases and controls, using a bandwidth
of 0.06, as discussed before.

> cellsize <- kcontrols$xstep * kcontrols$ystep
> ratiorho <- cellsize * sum((spkratio$kratio - ncases/ncontrols)^2)
> ratio <- cellsize * apply(rlabelratio, 1, function(X,
+ rho0) {
+ sum((X - rho0)^2)
+ }, rho0 = ncases/ncontrols)
> pvaluerho <- (sum(ratio > ratiorho) + 1)/(niter + 1)

The results for the test with null hypothesis ρ = ρ̂0 turned out to be
non-significant (p-value of 0.61), which means that the observed risk ratio is
consistent with a constant risk ratio. In principle, this agrees with the fact
that Diggle and Rowlingson (1994) did not find a significant association with
distance from main roads or two of the pollution sources and only a possible
association with the remaining site, which should be further investigated.
However, they found some relationship with other risk factors, but these were
not of a spatial nature and, hence, this particular test is unable to detect it.

Had the p-value of the test been significant, 90% point confidence sur-
faces could be computed in a similar way to the envelopes shown before,
but considering the different values of the estimates of ρ(x) under random
labelling and computing the p-value at each point. The procedure computes,
for each point xj in the grid, the proportion of values ρ̂i(xj) that are lower
than ρ̂(xj), where the ρ̂i(xj), i = 1, . . . , R are the estimated ratios obtained
by re-labelling cases and controls. Finally, the 0.05 and 0.95 contours of the
p-value surface can be displayed on the plot of ρ̂(x) to highlight areas of
significant low and high risk, respectively. This is shown in Fig. 7.10.

The contour lines at a given value can be obtained using function con-
tourLines, which takes an image object. This will generate contour lines
that can be converted to SpatialLinesDataFrame objects so that they can
be added to a plot as a layout.
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Fig. 7.10 Kernel ratio of the intensity of cases and controls. The continuous and
dashed lines show the surfaces associated with 0.95 and 0.05 p-values, respectively,
grey crosses mark the pollution sources. The value of ρ̂0 which marks a flat constant
risk is 0.2

> spkratio$pvaluemap <- (pvaluemap + 1)/(niter + 1)
> imgpvalue <- as.image.SpatialGridDataFrame(spkratio["pvaluemap"])
> clpvalue <- contourLines(imgpvalue, levels = c(0, 0.05,
+ 0.95, 1))
> cl <- ContourLines2SLDF(clpvalue)

7.5.2 Binary Regression Estimator

Kelsall and Diggle (1998) propose a binary regression estimator to estimate
the probability of being a case at a given location, which can be easily ex-
tended to allow for the incorporation of covariates. In principle, the probabil-
ities can be estimated by assuming that we have a variable Yi, which labels
cases (yi = 1) and controls (yi = 0) in a set of n = n1+n2 events. Condition-
ing on the point locations, Yi is a realisation of a Bernoulli variable Yi with
probability

P (Yi = 1|Xi = xi) = p(xi) =
λ1(xi)

λ0(xi) + λ1(xi)
.
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In practise, the following Nadaraya–Watson kernel estimator can be used:

p̂h(x) =

∑n
i=1 h

−2κh((x − xi)/h)yi∑n
i=1 h

−2κh((x − xi)/h)
, (7.5)

where κh(u) is a kernel function. Note that p(x) is related to the log-ratio
relative risk r(x) as follows:

logit(p(x)) = log

(
p(x)

1− p(x)

)
= log

(
λ1(x)

λ0(x)

)
= r(x) + log(n1/n0).

p̂h(x) can be estimated as

p̂h(x) =
λ̂1(x)

λ̂1(x) + λ̂0(x)
.

To estimate the bandwidth that appears in this new estimator, Kelsall and
Diggle (1998) suggest another cross-validation criterion based on the value of
h that minimises

CV (h) =

[
n∏

i=1

p̂−i
h (xi)

yi(1− p̂−i
h (xi))

1−yi

]−1/n

.

This criterion is available in function bw.relrisk in the spatstat package.

> rrbw <- bw.relrisk(pppasthma, hmax = 0.5)

Using the new criterion we obtained a bandwidth of 0.209. However, we
believe that this value would over-smooth the data and we have set it to
0.06, as in the estimation of the relative risk ratio. The estimator for p(x)
can be computed easily, as is shown below. Figure 7.11 shows the resulting
estimate.

> bwasthmap <- 0.06

> rr <- relrisk(pppasthma, bwasthmap)
> spkratio$prob <- as(as(rr, "SpatialGridDataFrame"),
"SpatialPixelsDataFrame")$v

7.5.3 Binary Regression Using Generalised
Additive Models

This formulation allows the inclusion of covariates in the model by means
of standard logistic regression. In addition, the residual spatial variation can
be modelled by including a smooth spatial function. In other words, if u is a
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Fig. 7.11 Binary regression estimator using the probability of being a case at every
grid cell in the study region

vector of covariates observed at location x and g(x) is a smooth function not
dependent on the covariates, the formulation is

logit(p(x)) = u′β + g(x).

If the covariates are missing, the former expression is just another way of
estimating the probability surface. Kelsall and Diggle (1998) estimate g(x)
using a kernel weighted regression. We have used packagemgcv (Wood, 2006)
to fit the Generalised Additive Model (GAM) models but, given that this
package lacks the same non-parametric estimator used in Kelsall and Diggle
(1998), we have preferred the use of a penalised spline instead.

The following example shows how to fit a GAM using the distance of the
events to the pollution sources and main roads, and controlling for known
and possible risk factors such as gender, age, previous events of hay fever,
and having at least one smoker in the house. Rows have been filtered so
that only children with a valid value of Gender (1 or 2) are used. We have
included the distance as a proxy of the actual exposure to any risk factor
caused by the pollution sources or the roads. Other models that consider a
special modelling for the distance are considered later.

> spasthma$y <- as.integer(!as.integer(spasthma$Asthma) -
+ 1)
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> ccasthma <- coordinates(spasthma)
> spasthma$x1 <- ccasthma[, 1]
> spasthma$x2 <- ccasthma[, 2]
> spasthma$dist1 <- sqrt(spasthma$d2source1)
> spasthma$dist2 <- sqrt(spasthma$d2source2)
> spasthma$dist3 <- sqrt(spasthma$d2source3)
> spasthma$droads <- sqrt(spasthma$roaddist2)
> spasthma$smoking <- as.factor(as.numeric(spasthma$Nsmokers >
+ 0))
> spasthma$Genderf <- as.factor(spasthma$Gender)
> spasthma$HayFeverf <- as.factor(spasthma$HayFever)

> library(mgcv)
> gasthma <- gam(y ~ 1 + dist1 + dist2 + dist3 + droads +
+ Genderf + Age + HayFeverf + smoking + s(x1, x2),
+ data = spasthma[spasthma$Gender == 1 | spasthma$Gender ==
+ 2, ], family = binomial)

> summary(gasthma)

Family: binomial
Link function: logit

Formula:
y ~ 1 + dist1 + dist2 + dist3 + droads + Genderf + Age + HayFeverf +

smoking + s(x1, x2)

Parametric coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.0326790 0.9196841 -2.210 0.0271 *
dist1 0.9822130 6.0721457 0.162 0.8715
dist2 -9.5791583 5.7719999 -1.660 0.0970 .
dist3 11.2248253 7.8743652 1.425 0.1540
droads 0.0001479 0.0001717 0.861 0.3890
Genderf2 -0.3476861 0.1562020 -2.226 0.0260 *
Age -0.0679031 0.0382349 -1.776 0.0757 .
HayFeverf1 1.1881333 0.1875415 6.335 2.37e-10 ***
smoking1 0.1651213 0.1610364 1.025 0.3052
---
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Approximate significance of smooth terms:
edf Ref.df Chi.sq p-value

s(x1,x2) 2.001 2.001 7.002 0.0302 *
---
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

R-sq.(adj) = 0.0403 Deviance explained = 4.94%
UBRE score = -0.12348 Scale est. = 1 n = 1283

The results show that the significant variables are the presence of reported
hay fever (p-value 2.4e− 10) and gender (p-value 0.026). The coefficient of
the second pollution source is marginally significant (p-value 0.097). The
smoothed residual term using splines is significant (p-value 0.0302), which
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suggests that there may have been some residual spatial variation unexplained
in the generalised linear model.

7.5.4 Point Source Pollution

In the previous model, we have shown how to consider the exposure to a
number of pollution sources by including the distance as a covariate in the
model. However, this approach does not allow for a more flexible parametric
modelling of the exposure according to the distance to a pollution source.
Diggle (1990) proposed the use of an IPP for the cases in which their intensity
accounts for the distance to the pollution sources. In particular, the intensity
is as follows:

λ1(x) = ρλ0(x)f(x− x0; θ),

ρmeasures the overall number of events per unit area, λ0(x) is the spatial vari-
ation of the underlying population (independent of the effect of the source),
and f(x− x0; θ) is a function of the distance from point x to the location of
the source x0 and has parameters θ. Diggle (1990) uses a decaying function
with distance

f(x− x0;α,β) = 1 + α exp(−β||x − x0||2).

Parameters ρ, α, and β of λ1(x) can be estimated by maximising the likeli-
hood of the IPP, assuming that λ0(x) is estimated by kernel smoothing taking
a certain value h0 of the bandwidth. That is, the value of h0 is not obtained
by the maximisation procedure, but choosing a reasonable value for h0 can
be difficult and it can have an important impact on the results.

A slightly different approach that does not require the choice of a band-
width is considered in Diggle and Rowlingson (1994). It is based on the previ-
ous scenario, but conditioning on the location of cases and controls to model
the probability of being a case at location x:

p(x) =
λ1(x)

λ1(x) + λ0(x)
=

ρf(x− x0;α,β)

1 + ρf(x− x0;α,β)
.

As in the previous scenario, the remaining parameters of the model can be
estimated by maximising the log-likelihood:

L(ρ, θ) =
n1∑

i=1

log(p(xi)) +
n0∑

j=1

log(1− p(xj)).
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This model can be fitted using function tribble from package splancs.
Given that λ0(x) vanishes we only need to pass the distances to the source
and the labels of cases and controls.

To compare models that may include different sets of pollution sources
or covariates, Diggle and Rowlingson (1994) compare the difference of the
log-likelihoods by means of a chi-square test. The following example shows
the results for the exposure model with distance to source two and another
model with only the covariate hay fever.

> D2_mat <- as.matrix(spasthma$dist2)
> RHO <- ncases/ncontrols
> expsource2 <- tribble(ccflag = spasthma$y, vars = D2_mat,
+ rho = RHO, alphas = 1, betas = 1)

> print(expsource2)

Call:
tribble(ccflag = spasthma$y, vars = D2_mat, alphas = 1, betas = 1,

rho = RHO)
Kcode = 2

Distance decay parameters:
Alpha Beta

[1,] 1.305824 25.14672

rho parameter : 0.163395847627903

log-likelihood : -580.495955916672
null log-likelihood : -581.406203518987

D = 2(L-Lo) : 1.82049520462942

> Hay_mat <- as.matrix(spasthma$HayFever)
> exphay <- tribble(ccflag = spasthma$y, rho = RHO, covars = Hay_mat,
+ thetas = 1)

> print(exphay)

Call:
tribble(ccflag = spasthma$y, rho = RHO, covars = Hay_mat, thetas = 1)
Kcode = 2

Covariate parameters:
[1] 1.103344

rho parameter : 0.163182953009354

log-likelihood : -564.368250327801
null log-likelihood : -581.406203518987

D = 2(L-Lo) : 34.0759063823707
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As the output shows, the log-likelihood for the model with exposure to
source 2 is −580.5, whilst for the model with the effect of hay fever is
only −564.4. This means that there is a significant difference between the
two models and that the model that accounts for the effect of hay fever is
preferable. Even though the second source has a significant impact on the
increase of the cases of asthma, its effect is not as important as the effect of
having suffered from hay fever. However, another model could be proposed
to account for both effects at the same time.

> expsource2hay <- tribble(ccflag = spasthma$y, vars = D2_mat,
+ rho = RHO, alphas = 1, betas = 1, covars = Hay_mat,
+ thetas = 1)

This new model (output not shown) has a log-likelihood of −563, with
two more parameters than the model with hay fever. Hence, the presence of
the second source has a small impact on the increase of cases of asthma after
adjusting for the effect of hay fever, which can be regarded as the main factor
related to asthma, and the model with hay fever only should be preferred.
The reader is referred to Diggle and Rowlingson (1994) and Diggle (2003, p.
137) for more details on how the models can be compared and results for
other models.

These types of models are extended by Diggle et al. (1997), who consider
further options for the choice of the function f(x−x0,α,β) to accommodate
different spatial variants of the risk around the source.

In our experience, these models can be very sensitive to the initial values
for certain data sets, especially if they are sparse. Hence, it is advised to
fit the model using different values for the initial values to ensure that the
algorithm is not trapped in a local maximum of the likelihood.

7.5.4.1 Assessment of General Spatial Clustering

As discussed by Diggle (2000), it is important to distinguish between spatial
variation of the risk and clustering. Spatial variation occurs when the risk
is not homogeneous in the study region (i.e. all individuals do not have the
same risk) but cases appear independently of each other according to this
risk surface, whilst clustering occurs when the occurrence of cases is not at
random and the presence of a case increases the probability of other cases
appearing nearby.

The former methods allow us to inspect a raised incidence in the num-
ber of cases around certain pre-specified sources. However, no such source is
identified a priori, and a different type of test is required to assess clustering
in the cases.

Diggle and Chetwynd (1991) propose a test based on the homogeneous K-
function to assess clustering of the cases as compared to the controls. The null
hypothesis is as before, that is cases and controls are two IPP that have the
same intensities up to a proportionality constant. Hence, they will produce
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the same K-functions. Note that the inverse is not always true, that is two
point processes with the same homogeneous K-function can be completely
different (Baddeley and Silverman, 1984). Diggle and Chetwynd (1991) take
the difference of the two K-functions to evaluate whether the cases tend
to cluster after considering the inhomogeneous distribution of the popula-
tion: D(s) = K1(s) − K0(s), where K1(s) and K0(s) are the homogeneous
K-functions of cases and controls, respectively.

The test statistic is

D =

∫

A

D(s)

var[D(s)]1/2
ds,

where var[D(s)] is the variance of D(s) under the null hypothesis. Diggle and
Chetwynd (1991) compute the value of this variance under random labelling
of cases and controls so that the significance of the test statistic can be
assessed. Note that under the null hypothesis the expected value of the test
statistic D is zero. Finally, the integral is approximated in practice by a
discrete sum at a set of finite distances, as the T statistic was computed
before.

Significant departure from 0 means that there is a difference in the distri-
bution of cases and controls, with clustering occurring at the range of those
distances for which D(s) > 0. Furthermore, pointwise envelopes can be pro-
vided for the test statistic by the same Monte Carlo test so that the degree
of clustering can be assessed. Function Kenv.label (in splancs) also provides
envelopes for the difference of the K-functions but it does not carry out any
test of significance.

A similar test can be implemented using envelope in spatstat. First of all,
we will define function Kdif to compute the difference of the K-functions.
This function will take the point pattern, a vector of distance r at which
D(s) is computed and the desired edge correction to be used when calling to
Kest.

> Kdif <- function(Xppp, r, cr = "border") {
+ k1 <- Kest(Xppp[marks(Xppp) == "case"], r = r, correction = cr)
+ k2 <- Kest(Xppp[marks(Xppp) == "control"], r = r,
+ correction = cr)
+ res <- data.frame(r = r, D = k1[[cr]] - k2[[cr]])
+ return(fv(res, valu = "D", fname = "D"))
+ }

In the call to envelope we will also keep the simulated values in order to
compute the variance of D(s) used in the test statistic.

> r <- seq(0, 0.15, by = 0.01)
> envKdif <- envelope(pppasthma, Kdif, r = r, nsim = 99,
+ cr = "iso", nrank = 2, savefuns = TRUE, simulate =
expression(rlabel(pppasthma)))
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> khcases <- Kest(cases, r = r, correction = "isotropic")
> khcontrols <- Kest(controls, r = r, correction = "isotropic")

Using the saved values ew are able to estimate the variance of D(s), the
test statistic for the observed data set and the tests statistics for the relabelled
data sets to conduct the Monte Carlo test.

> simfuns <- as.data.frame(attr(envKdif, "simfuns"))[,
+ -1]
> khcovdiag <- apply(simfuns, 1, var)
> T0 <- sum(((khcases$iso - khcontrols$iso)/sqrt(khcovdiag))[-1])
> T <- apply(simfuns, 2, function(X) {
+ sum((X/sqrt(khcovdiag))[-1])
+ })

> pvalue <- (sum(T > T0) + 1)/(niter + 1)
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Fig. 7.12 Actual value of D(s) with approximate 95% confidence intervals (dashed
black lines) and 95% envelopes (gray area)

The p-value for this data set is 0.31, meaning that there is no significant
difference between the distribution of cases and controls. The outcome is
consistent with the fact that the observed K-function is contained by the
simulation envelopes and approximated 95% confidence intervals, as shown
in Fig. 7.12.

7.5.5 Accounting for Confounding and Covariates

Diggle et al. (2007) propose a similar way of assessing clustering by means of
the inhomogeneous K-function KI,λ(s) (Baddeley et al., 2000). For an IPP
with intensity λ(x), it can be estimated as
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K̂I,λ(s) = |A|−1
n∑

i=1

∑

j "=i

w−1
ij

|{xj : d(xi, xj) ≤ s}|
λ(xi)λ(xj)

.

Note that this estimator is a generalisation of the estimator of the homoge-
neous K-function from expression (7.3) and that in fact reduces to it when
instead of an IPP we have an HPP (the intensity becomes λ(x) = λ). Simi-
larly, the value of KI,λ(s) for an IPP with intensity λ(s) is πs2.

In practise the intensity λ(x) needs to be estimated either parametrically
or non-parametrically, so that the estimator that we use is

K̂I,λ̂(s) = |A|−1
n∑

i=1

∑

j "=i

w−1
ij

|{xj : d(xi, xj) ≤ s}|
λ̂(xi)λ̂(xj)

.

Values of K̂I,λ̂(s) higher than πs2 will mean that the point pattern shows

more aggregation than that shown by λ(x) and values lower than πs2 reflect
more relative homogeneity.

To be able to account for confounding and risk factors, Diggle et al. (2007)
propose the use of a semi-parametric estimator of the intensity in a case–
control setting. The basic assumption is that controls are drawn from an
IPP with spatially varying intensity λ0(x). The cases are assumed to appear
as a result of the inhomogeneous distribution of the population, measured
by λ0(x), plus other risk factors, measured by a set of spatially referenced
covariates z(x). Hence, the intensity of the cases is modelled as

λ1(x) = exp{α+ βz(x)}λ0(x),

where α and β are the intercept and covariate coefficients of the model,
respectively. When there are no covariates, the intensity of the cases
reduces to

λ1(x) =
n1

n0
λ0(x).

Note that it is possible to use any generic non-negative function f(z(x); θ) to
account for other types of effects

λ1(x) = λ0(x)f(z(x); θ).

This way it is possible to model non-linear and additive effects.
To estimate the parameters that appear in the intensity of the cases, we

can use the same working variables Yi that we have used before (see the binary
regression estimator in Sect. 7.5.2), with values 1 for cases and 0 for controls.
Conditioning on the locations of cases and controls, Yi is a realisation of a
Bernoulli process with probability
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P (Yi = 1|xi, z(x)) = p(xi) =
λ1(x)

λ0(x) + λ1(x)
=

exp{α+ βz(x)}
1 + exp{α+ βz(x)} . (7.6)

Hence, conditioning on the locations of cases and controls, the problem
is reformulated as a logistic regression and α and β can be estimated using
function glm.

Baddeley et al. (2000) estimate the intensity non-parametrically and
use the same data to estimate both the intensity and the inhomogeneous
K-function, but Diggle et al. (2007) show that this can give poor performance
in detecting clustering. This problem arises from the difficulty of disentan-
gling inhomogeneous spatial variation of process from clustering of the events
(Cox, 1955). Another problem that appears in practise is that the intensities
involved must be bounded away from zero. If kernel smoothing is used, a
good alternative to the quartic kernel is a Gaussian bivariate kernel.

The following piece of code shows how to estimate the inhomogeneous
K-function both without covariates and accounting for hay fever.

> glmasthma <- glm(y ~ HayFeverf, data = spasthma, family = "binomial")
> prob <- fitted(glmasthma)
> weights <- exp(glmasthma$linear.predictors)
> lambda0 <- interp.im(kcontrols, coords(cases)[, 1], coords(cases)[,
+ 2])
> lambda1 <- weights[marks(pppasthma) == "case"] * lambda0
> ratiocc <- ncases/ncontrols
> kihnocov <- Kinhom(cases, ratiocc * lambda0, r = r)
> kih <- Kinhom(cases, lambda1, r = r)

To assess for any residual clustering left after adjusting for covariates,
Diggle et al. (2007) suggest the following test statistic:

D =

∫ s0

0

K̂I,λ̂1
(s)− E[s]

var(KI,λ(s))1/2
ds,

E[s] is the expectation of K̂I,λ̂1
(s) under the null hypothesis. In principle,

it should be πs2, but when kernel estimators are used in the computation
of the intensity, the estimate of KI,λ(s) may be biased. E[s] can be com-

puted as the average of all the estimates K̂I,λ̂1
(s), which have been obtained

during the Monte Carlo simulations (as explained below). var(KI,λ(s)) can
be computed in a similar way.

The Monte Carlo test proposed by Diggle et al. (2007) is similar to the one
that we used in the homogeneous case (see Sect. 7.5.4.1), with the difference
that the re-labelling must be done taking into account the effects of the
covariates. That is, when we relabel cases and controls, the probability of
being a case will not be the same for all points but it will depend on the
values of z(x). In particular, these probabilities are given by (7.6). The values
of the covariates are fixed to the values obtained by fitting the model with
the observed data set (i.e. they are not re-estimated when the points are re-



7.5 Some Applications in Spatial Epidemiology 209

labelled) because we are only interested in testing for the spatial variation
and not that related to the estimation of the coefficients of the covariates.

> rlabelp <- function(Xppp, ncases, prob) {
+ idxsel <- sample(1:npoints(Xppp), ncases, prob = prob)
+ marks(Xppp) <- "control"
+ marks(Xppp)[idxsel] <- "case"
+ return(Xppp)
+ }
> KIlambda <- function(Xppp, r, cr = "iso", weights, sigma) {
+ idxrel <- marks(Xppp) == "case"
+ casesrel <- unmark(Xppp[idxrel])
+ controlsrel <- unmark(Xppp[!idxrel])
+ lambda0rel <- interp.im(density(controlsrel, sigma),
+ coords(casesrel)[, 1], coords(casesrel)[, 2])
+ lambda1rel <- weights[idxrel] * lambda0rel
+ KI <- Kinhom(casesrel, lambda1rel, r = r, correction = cr)
+ res <- data.frame(r = r, KI = KI[[cr]])
+ return(fv(res, valu = "KI", fname = "K_[I,lambda]"))
+ }

> set.seed(4567)
> envKInocov <- envelope(pppasthma, KIlambda, r = r, cr = "iso",
+ weights = weights, sigma = bwasthma, nsim = 99, nrank = 2,
+ savefuns = TRUE, simulate = expression(rlabelp(pppasthma,
+ ncases = ncases, prob = rep(ratiocc, npoints(pppasthma)))))
> envKIcov <- envelope(pppasthma, KIlambda, r = r, cr = "iso",
+ weights = weights, sigma = bwasthma, nsim = 99, nrank = 2,
+ savefuns = TRUE, simulate = expression(rlabelp(pppasthma,
+ ncases = ncases, prob = prob)))

> kinhomrelnocov <- as.data.frame(attr(envKInocov, "simfuns"))[,
+ -1]
> kinhomrel <- as.data.frame(attr(envKIcov, "simfuns"))[,
+ -1]

> kinhsdnocov <- apply(kinhomrelnocov, 1, sd)
> D0nocov <- sum(((envKInocov$obs - envKInocov$mmean)/kinhsdnocov)[-1])
> Dnocov <- apply(kinhomrelnocov, 2, function(X) {
+ sum(((X - envKInocov$mmean)/kinhsdnocov)[-1])
+ })
> pvaluenocov <- (sum(Dnocov > D0nocov) + 1)/(niter + 1)

> kinhsd <- apply(kinhomrel, 1, sd)
> D0 <- sum(((envKIcov$obs - envKIcov$mmean)/kinhsd)[-1])
> D <- apply(kinhomrel, 2, function(X) {
+ sum(((X - envKIcov$mmean)/kinhsd)[-1])
+ })
> pvalue <- (sum(D > D0) + 1)/(niter + 1)

Figure 7.13 shows the estimated values of the inhomogeneous K-function
plus 95% envelopes under the null hypothesis. In both cases there are no
signs of spatial clustering. The p-values are 0.09 (no covariates) and 0.04
(with hay fever). The differences in the p-values are due to the fact that we
are adjusting for hay fever. This is consistent with the plots in Fig. 7.13.
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Fig. 7.13 Results of the test based on the inhomogeneous K-function for the asthma
data set. The intensity has been modulated to account for the effect of suffering from
hay fever

7.6 Further Methods for the Analysis
of Point Patterns

In this chapter we have just covered some key examples but the analy-
sis of point patterns with R goes beyond this. Other important problems
that we have not discussed here are the analysis of marked point processes
(Schabenberger and Gotway 2005, pp. 118–122; Diggle 2003, pp. 82–85),
spatio-temporal analysis (see Schabenberger and Gotway 2005, pp. 442–445;
Diggle 2006), and complex model fitting and simulation from different point
processes (as extensively discussed in Möller and Waagepetersen, 2003). Bad-
deley et al. (2005) provide a recent compendium of theoretical problems and
applications of the analysis of point patterns, including a description of pack-
age spatstat. Some of the examples described therein should be reproducible
using the contents of this chapter. Gelfand et al. (2010) devote several chap-
ters to the analysis of spatial point patterns, including model fitting, marked
and spatio-temporal point patterns.

The analysis of spatio-temporal point patterns can be conducted with a
number of packages. Package spacetime provides some basic classes for spatio-
temporal point patterns with some basic subsetting and plotting capabilities
splancs provides functions for spatio-temporal kernel smoothing and the ho-
mogeneous spatio-temporal K-functions. Package stpp includes a number of
functions to simulate an visualize spatio-temporal point patterns (including
the possibility of creating animations) and compute the space-time inhomo-
geneous K-function, which can be used to assess clustering in space and time
(Gabriel and Diggle, 2009). Package lgcp focuses on log-Gaussian Cox Pro-
cesses and it implements functions for model fitting and inference for spatial



7.6 Further Methods for the Analysis of Point Patterns 211

and spatio-temporal point processes. Finally, splancs includes data types for
three-dimensional and spatio-temporal point patterns.

The Spatial and Spatio-Temporal Task Views contain a list of other pack-
ages for the analysis and visualisation of point patterns. The reader is referred
there for updated information.
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